LESSON PLAN

Discipline:

Civil Engg. ,UGMIT Rayagada

Semester:

3RD

Subject:

CLEAN TO THE

STRUCTURAL MECHANICS (TH-1)

Class allotted:

5P/week

Session:

2022 Winter

		Theory/Practical Topics	Remarks
Week	Class Day		
	1-5	1. Review basic concepts	
		1.1 basic principles of mechanics	
		1.2review of CG and MI 2 Simple and complex stress and strain	
		2. Simple and complex stress and	
		Introduction	
2	6-10	2.1 Introduction to stress and strain, properties of	
		materials, Types of stress, Types of strains, Shear	
		stress and strains, Poisson's ratio, Hooke's law	
3	11-15	2.2 Application of simple stress and strain in Engg.	
		field	
4	16-20	2.3 Complex stress and strain	
·		3.1 Stresses in beam, due to bending	
5	21-25	3.2 Shear stresses in beams	
		3.3 Stresses in shafts due to torsion	
6	26-30	3.4 Combined bending and direct stress	
		4.1 Column and struts Introduction, End conditions,	
		etc.	
7	31-35	Euler's theory of long columns, Problems	
,		5 Introduction to SF and BM	
Q	36-40	5.1 Types of loads and beams, types of reactions,	
		support reactions, Calculation of support reactions	
()	41-45	5.2 Calculation of SF and BM for determinate	
		beams for different loading conditions	
10	46-50	6.1 Introduction to slope and deflection, Relation and	
10		importance of slope and deflection	
11	51-55	6.2 Slope and deflection of cantilever and simply	
11	31-33	supported beams under conc. And UDL by Double	
		Supported beams under cone. And ODE by Double	

10		integration and Macauly's method	
12	56-60	7.1 Indeterminacy in beams, principle of consistent deformation or compatibility, Analysis of propped cantilever	124
13	61-65	Fixed and two span continuous beam by principle of superposition, SF and BM diagram of beam with point load and UDL covering full span	
14	66-70	8.1 Introduction to trusses, Types, Statically determinate and indeterminate, Degree of indeterminacy, Stable and unstable trusses, advantages	
15	71-75	8.2 Analysis of trusses, Method of section and joints	

Signature of Faculty:

Manas Ranjan Rradham

Signature of HOD:

Maras Ranjan Pradham 16/9/21002