Academic lesson plan for 2nd semester (summer 2022)

Name of teaching faculty: Chinmaya Maharana

Semester: 2nd

No. of periods per week: 4

End semester Exam: 80

Discipline/Deptt:

Subject (Theory): Engg. Mechanics

Total Periods: 60

Class test: 20

Total marks: 100

Week	Period	Unit/Chapter	Topics to be covered
1 st	1 st	1.1	Fundamentals. Definitions of Mechanics, Statics, Dynamics,
			RigidBodies,
	2 nd	1.2	Force System. Definition, Classification of force system
			according to plane & line of action.
	3 rd	1.2	Characteristics of Force & effect of Force. Principles of
			Transmissibility & Principles of Superposition.
			Action & Reaction Forces & concept of Free
			BodyDiagram.
	4 th	1.3	Resolution of a Force. Definition, Method of Resolution, Types
			of Component forces, Perpendicular components &
			non- perpendicular components.
2 nd	1 st	1.4	Composition of Forces. Definition, Resultant Force, Method of
			composition of forces
	2 nd	1.4.1	Analytical Method such as Law of Parallelogram of forces &
			method of resolution.
	3 rd	1.4.2	Graphical Method. Introduction, Space diagram, Vector
			diagram, Polygon law offorces.
	4 th	1.4.3	Resultant of concurrent, non-concurrent & parallel force
			system by Analytical & Graphical Method.
3 rd	1 st	1.5	Moment of Force. Definition, Geometrical meaning of
			moment of a force, measurement of moment of a force & its
			S.lunits.
	2 nd	1.5	Classification of moments according to direction of rotation,
	- rd		sign convention,
	3 rd	1.5	Law of moments, Varignon'sTheorem
4 th	4 th 1 st	1.5	Couple – Definition, S.I. units, measurement of couple
4		1.5	properties of couple, simple problems on Force systems
	2 nd 3 rd	2.1	Introduction to Equilibrium, Definition, condition of equilibrium
	3	2.1	Analytical & Graphical conditions of equilibrium for
	4 th	2.2	concurrent, non-concurrent & Free Body Diagram.
	4	2.2	Lami's Theorem – Statement, Application for solving various
- th	a st		engineering problems.
5 th	1 st 2 nd	2.1	Revision- CH-1& 2
cth		3.1	Definition of friction& Frictional forces
	3 rd 4 th	3.1	Define Limiting frictional force & Coefficient of Friction.
	1 st	3.1	Define Angle of Friction & Repose & Laws of Friction
6 th	1	3.1	Advantages & Disadvantages of Friction.

	2 nd		Friction problem
	3 rd		Friction problem
	4 th		Friction problem
7 th	1 st	3.2	Equilibrium of bodies on level plane – Force applied on
			horizontal plane
	2 nd		Problem solved of Force applied on horizontal plane
	3 rd	3.2	Equilibrium of bodies on level plane – Force applied on inclined
			plane
	4 th	3.2	Problem solved of Force applied on inclined plane
8 th	1 st	3.3	Ladder, Wedge Friction
	2 nd		Problems solved on Ladder friction
	3 rd		Problems solved on Ladder friction
	4 th		Problems solved on wedge friction
9 th	1 st		Revision- CH-3
	2 nd	4.1	Introduction to centroid and M.I, Lamia's Theorem –
			Statement, Application for solving various engineering
			problems.
	3 rd	4.1	centroid of geometrical figures such as squares,
			rectangles, triangles, circles, semicircles & quarter
			circles
	4 th	4.1	centroid of composite figures, problems on centroid
10 th	1 st	4.2	Moment of Inertia – Definition, Parallel axis & Perpendicular
10	-	1.2	axis Theorems
	2 nd	4.2	M.I. of plane lamina & different engineering sections.
	2 3 rd	7.2	Problems on M.I
	4 th		Problems on M.I
11 th	1 st	5.1	Definition of simple machine, velocity ratio of simple and
	-		compound gear train
	2 nd	5.1	Explain simple & compound lifting machine
	3 rd	5.1	Define M.A, V.R.& Efficiency and State the relation between
			them
	4 th	5.1	State Law of Machine, Reversibility of Machine,
			Self- Locking Machine.
12 th	1 st	5.2	Study of simple machines – simple axle & wheel
	2 nd	5.2	Problems solved on simple axle & wheel
	3 rd	5.2	Discussion about Single purchase crab winch
	4 th	5.2	Problem solved on Single purchase crab winch
13 th	1 st	5.2	Discussion about double purchase crab winch
	2 nd	5.2	Problems on double purchase crab winch
	3 rd	5.2	Discussion of Worm & Worm Wheel
	4 th	5.2	Problems on Worm& Worm Wheel
14 th	1 st	5.2	Screw Jack
	2 nd	5.2	Problems solved on screw jack
	3 rd	5.3	Types of hoisting machine-like derricks etc. Their use and
			working principle
	4 th	6.1	Kinematics & Kinetics, Principles of Dynamics, Newton's
			Laws of Motion
15 th	1 st	6.1	Motion of Particle acted upon by a constant force, Equations
			Of motion

2 nd	6.2	De-Alembert's Principle, Work, Power, Energy & its Engineering Applications
3 rd	6.3	Kinetic & Potential energy & its application, Momentum & impulse, conservation of energy & linear momentum
4 th	6.3	collision of elastic bodies, and Coefficient of Restitution