UTKAL GOURAV MADHUSUDAN INSTITUTE OF TECHNOLOGY, RAYAGADA Academic Lesson Plan for Winter Semester- 2022

Name of the Teaching Faculty: Er. Amiya Ranjan Patra DEPARTMENT: Mechanical Engineering

Semester: 3rd Subject: STRENGTH OF MATERIAL

No. of Periods per Week: 4 Total Periods: 60 End Semester Exam: 80 Class Test: 20 Total Marks: 100 Theory - 2

SI. No.	Week	Period	Topic to be Covered
1.	1 st	1 st	Types of load, stresses & strains,(Axial and tangential)
2.		2 nd	Hooke's law, Young's modulus, bulk modulus, modulus of rigidity,
3.		3 rd	Poisson's ratio, derive the relation between three elastic constants.
4.		4 th	Principle of super position, stresses in composite section
5.	2 nd	1 st	Concept Temperature stress
6.		2 nd	Determine the temperature stress in composite bar.
7.		3 rd	Strain energy and resilience, Stress due to gradually applied,
8.		4 th	suddenly applied and impact load
9.	3 rd	1 st	Solve Simple problems on above.
10.		2 nd	Do
11.		3 rd	Definition of hoop and longitudinal stress, strain
12.		4 th	Derivation of hoop stress, longitudinal stress, hoop strain.
13.	4 th	1 st	longitudinal strain and volumetric strain.
14.		2 nd	Do
15.		3 rd	Computation of the change in length, diameter and volume.
16.		4 th	Solve simple problems on above.
17.	5 th	1 st	Do

		- nd	Determination of normal stress, shear stress and resultant stress
18.	l	2 nd	on oblique plane.
19.		3 rd	Do
20.		4 th	Do
		-	
21.		1 st	Location of principal plane and computation of principal stress
22.	6 th	2 nd	Do
23.		3 rd	Do
24.		4 th	Concept of Mohr's circle
25.		1 st	Location of principal plane using Mohr's circle
26.	7 th	2 nd	Computation of principal stress using Mohr's circle
27.	/	3 rd	Maximum shear stress using Mohr's circle
28.		4 th	Types of beam and load
29.		1 st	Do
30.	8 th	2 nd	Concepts of Shear force and bending moment
31.	8	3 rd	Do
32.		4 th	Do
33.		1 st	Concept Shear Force and Bending moment diagram
34.	9 th	2 nd	Concept of cantilever beam ,simply supported beam and over
54.		_	hanging beam
35.		3 rd	Concept of point load and uniformly distributed load
36.		4 th	Determine S.F. and B.M. of the above beams under point load.
37.		1 st	Determine S.F. and B.M. of the above beams under udl.
38.	10 th	2 nd	Assumptions in the theory of bending.
39.	10	3 rd	Bending equation.
40.		4 th	Moment of resistance
41.		1 st	Concept of Section modulus& neutral axis.
42.	11 th	2 nd	Do
43.	11	3 rd	Do
44.		4 th	Slove simple Problem
45.		1 st	Do
46.	12 th	2 nd	Do
47.	12.	3 rd	Do
48.		4 th	Define column, Axial load, Eccentric load on column
40		1 st	Direct stresses and Bending stresses, Maximum and Minimum
49.			stresses.
50.	13 th	2 nd	Numerical problems on above.
51.		3 rd	Do
52.		4 th	Buckling load calculation using Euler's formula in columns with
	a ath	•	various end condition.
53.	14 th	1 st	Do

54.		2 nd	Concept of pure torsion.
55.		3 rd	The torsion equation for solid circular shaft.
56.		4 th	The torsion equation for hollow circular shaft.
57.		1 st	Do
58.		2 nd	Comparison between solid and hollow shaft subjected to pure
56.	15 th	2	torsion
59.		3 rd	Do
60.		4 th	Do

The above lesson plan prepared by the concerned faculty.

Er. Amiya Ranjan Patra

PTGF, MECHANICAL DEPARTMENT