UTKAL GOURAV MADHUSUDAN INSTITUTE OF TECHNOLOGY, RAYAGADA Academic Lesson Plan for Winter Semester- 2022

Name of the Teaching Faculty: Er. Amiya Ranjan Patra DEPARTMENT: Mechanical Engineering

Semester: 3rd Subject: ENGINEERING MATERIAL

No. of Periods per Week: 4 Total Periods: 60 End Semester Exam: 80 Class Test: 20 Total Marks: 100 Theory - 3

SI. No.	Week	Period	Topic to be covered
1.	1 st	1 st	Material classification
2.		2 nd	Do
3.		3 rd	Properties of Materials
4.		4 th	Performance requirements
5.	2 nd	1 st	Material reliability and safety
6.		2 nd	Characteristics and application of ferrous materials
7.		3 rd	Classification, composition and application of low
8.		4 th	carbon steel, medium carbon steel and High carbon steel
9.		1 st	Alloy steel: Low alloy steel, high alloy steel, tool steel etc.
10.	3 rd	2 nd	Tool steel: Effect of various alloying elements likrCr, Mn etc.
11.	3,,	3 rd	Concept of phase diagram and cooling curves
12.		4 th	Do
13.		1 st	Do
14.	4 th	2 nd	Features of Iron-Carbon diagram
15.		3 rd	with salient micro-constituents of Iron and Steel
16.		4 th	Do
17.	5 th	1 st	Do
18.		2 nd	Do
19.		3 rd	Crystal defines, classification of crystals, ideal crystal and
20.		4 th	crystal imperfections
21.	6 th	1 st	Classification of imperfection: Point defects, line defects,
22.		2 nd	surface defects and volume defects
23.		3 rd	Types and causes of point defects: Vacancies,
24.		4 th	Interstitials and impurities
25.	7 th	1 st	Types and causes of line defects
26.		2 nd	Effect of imperfection on material properties
27.		3 rd	Deformation by slip and twinning
28.		4 th	Effect of deformation on material properties
29.		1 st	Purpose of Heat treatment
30.	8 th	2 nd	Do
31.	8	3 rd	Process of heat treatment: Annealing, normalizing,
32.		4 th	hardening, tampering, stress relieving measures
33.	- 9 th	1 st	Do
34.		2 nd	Surface hardening: Carburizing and Nitriding

35.		3 rd	Effect of heat treatment on properties of steel
36.		4 th	Do
37.		1 st	Hardenability of steel
38.	10 th	2 nd	Do
39.		3 rd	Aluminum alloys: Composition, property .
40.		4 th	Usage of Duralmin, y- alloy.
41.		1 st	Copper alloys: Composition, property and usage of Copper Al.
42.	11 th	2 nd	Copper-Tin, Babbit , Phosperous bronze, brass,Copper- Nickel
43.		3 rd	Predominating elements of lead alloys,
44.		4 th	Zinc alloys and Nickel alloys ,Low alloy materials
45.		1 st	P-91,P-22 for power plants and other high temperature
45.	12 th		services.
46.		2 nd	High alloy materials like stainless steel grades of duplex,
47.		3 rd	super duplex materials etc.
48.		4 th	Do
49.	13 th	1 st	Classification, composition, properties and uses of Copper
50.		2 nd	base, Tin Base, Lead base, Cadmium base bearing materials
51.	13	3 rd	Do
52.		4 th	Classification, composition, properties and uses of
53.	14 th	1 st	Iron base and Copper base spring material
54.		2 nd	Do
55.		3 rd	Properties and application of thermosetting
56.		4 th	and thermoplastic polymers
57.		1 st	Properties of elastomers
58.	15 th	2 nd	Classification, composition, properties & uses of particulate
56.			based composites.
59.		3 rd	Fiber reinforced composites
60.		4 th	Classification and uses of ceramics

The above lesson plan prepared by the concerned faculty.

Er. Amiya Ranjan Patra

PTGF, MECHANICAL DEPARTMENT