UTKAL GOURAV MADHUSUDAN INSTITUTE OF TECHNOLOGY, RAYAGADA Academic Lesson Plan for Winter Semester- 2022

Name of the Teaching Faculty: Er. Sagar Kumar Jena

Semester: 5th

No. of Periods per Week: 4 End Semester Exam: 80 Total Marks: 100 Department: Mechanical Engineering Subject: DESIGN OF MACHINE ELEMENTS

Total Periods: 60 Class Test: 20 Theory - 2

SI. No.	Week	Period	Topic to be covered
1.	1 st	1 st	Introduction to Machine Design and Classify it.
2.		2 nd	Different mechanical engineering materials used in design.
3.		3 rd	Their uses and their mechanical and physical properties.
4.		4 th	Define working stress, yield stress, ultimate stress & factor of
5.		1 st	safety and stress –strain curve for M.S & C.I.
6.	2 nd	2 nd	Modes of Failure
7.		3 rd	Do
8.		4 th	State the factors governing the design of machine elements.
9.		1 st	Do
10.	3 rd	2 nd	Describe design procedure.
11.	3	3 rd	Do
12.		4 th	Do
13.		1 st	Joints and their classification.
14.	4 th	2 nd	State types of welded joints .
15.	4**	3 rd	State advantages of welded joints over other joints.
16.		4 th	Design of welded joints for eccentric loads.
17.	5 th	1 st	State types of riveted joints and types of rivets.
18.		2 nd	Describe failure of riveted joints.
19.		3 rd	Determine strength & efficiency of riveted joints.
20.		4 th	Design riveted joints for pressure vessel.
21.	6 th	1 st	Solve numerical on Welded Joint and Riveted Joints
22.		2 nd	Do
23.		3 rd	Do
24.		4 th	Do
25.	7 th	1 st	State function of shafts.
26.		2 nd	State materials for shafts.
27.		3 rd	Design solid & hollow shafts to transmit a given power at given
27.			rpm based on
28.		4 th	Do
29.	8 th	1 st	State standard size of shaft as per I.S.
30.		2 nd	State function of keys, types of keys & material of keys.
31.		3 rd	Describe failure of key, effect of key way.
32.		4 th	Design rectangular sunk key considering its failure against shear & Crushing

33.	9 th	1 st	Design rectangular sunk key by using empirical relation for given diameter of shaft.
34.		2 nd	State specification of parallel key, gib-head key, taper key as per I.S
35.		3 rd	Solve numerical on Design of Shaft and keys
36.		4 th	Do
37.	10 th	1 st	Design of Shaft Coupling
38.		2 nd	Requirements of a good shaft coupling
39.		3 rd	Types of Coupling.
40.		4 th	Design of Sleeve or Muff-Coupling.
41.	11 th	1 st	Do
42.		2 nd	Design of Clamp or Compression Coupling.
43.		3 rd	Do
44.		4 th	Solve simple numerical on above.
45.	12 th	1 st	Do
46.		2 nd	Do
47.		3 rd	Do
48.		4 th	Do
49.	13 th	1 st	Materials used for helical spring.
50.		2 nd	Standard size spring wire. (SWG).
51.		3 rd	Terms used in compression spring.
52.		4 th	Stress in helical spring of a circular wire.
53.	14 th	1 st	Do
54.		2 nd	Deflection of helical spring of circular wire.
55.		3 rd	Surge in spring.
56.		4 th	Solve numerical on design of closed coil helical compression
50.		•	spring
57.	15 th	1 st	Do
58.		2 nd	Do
59.		3 rd	Do
60.		4 th	Do

The above lesson plan prepared by the concerned faculty.

Er. Sagar Kumar Jena

PTGF, MECHANICAL DEPARTMENT