$\mathrm{Ch}-1$
Introduction

Advantages of Railways
\rightarrow Cause save in transportation on long bulk traffic.
\rightarrow Environmental friendliness.
\rightarrow Speedy distribution of finished products.
\rightarrow Mobility of people has been increased reliving consition in populated areds.
\rightarrow Growth of industries has been promoted due to transportation of raw material.
\rightarrow Trade development due to railways has increased the laving l and living standards of people.
\rightarrow It provides convinient and safe mode of transportation.
\rightarrow It helps in mass migration of population.
\rightarrow It is energy efficient.
\rightarrow Efficient land use and ease in capacity expansion.
Railway terminologies -
(1) Ballast:-

It is a granular material packed under and around The sleepers. to transfer load from the sleeper to balast. It provides elasticity to the track.
(2) Gauge -

The gauge of a track is measured
as the minimum distance between the inner running or gauge
bases of the two rails.
\rightarrow There are 3 types of gauge(1) Narrow

(2) Meter gauge
(3) Broad

Sleepers -
These are the members laid treansversky under the reails which are meant to support the rails over them and fransverese the load. from rails to ballast.
(4) Sleeper densityIt is rail lath in matres.
(5) Turn out A complete set of points and crossing with the intervening Lead rails.
(6) Tractor Resistance -

The force which resists the forward movement and speed of train are called as trackton resistance.
(4) $\frac{\text { Switch - }}{A \text { switch consists of a sit of }}$ stock and tounge rail. These ane trapped rails with a thicker and known as hill fixed to the main track while thinner

(1) Radius and simper elevation on

It is the technic by which
the movement of trains is controlled efficiently. to maintain safety on scheduled services.
Permanent way-
The combination of rail fitted on slipper and resting on ballast and subgrade is called rail track
an. permantentway.
$\stackrel{\text { Ballast shadrden }}{ }$

Requirements of permanent way-
(1) The gauge should be correct \& uniform.
(2) Rails should be in proper level.
(3) Track should be elastic in oredento absorb socks and vibrations of running track.
(5) Alignment should be correct.
(6)

Track structure should be strong,
low in initial cost as well as in maintenance cost.
Gauges in IndiaGauge of railway track is defined as the clear distance between the inner or running face of two tracks. The bistande between the inner faces of a pain of wheels is called as wheel gauge.

Types of gauges -

Type of Gauge
width
1.676 m

1 m
0.720 m

Narrow
gauge 0.610 m

Length of Rails As pert Indian Rail standared. the lengths
following-
(1) For Broad gauge-Lingth $=15$ m 42_{2},
(2) For meter gauge - Length $=12 \mathrm{~m}$.

* Length of Rails depends upon factors
following
(1) Manufacturing cost shall be resonable.
(2) Depends upon transportation facilities.
(3) Limited by the facilities of lifting and handling during loading \& unloading aces of waggons. Requirements of an Ideal joints(1) Two rails ends should remain true in line both latereally o vertically when trains move on the track.
(2) Rail joints should provide enough space for free expansion and contraction.
(3) It sloufdn't allow the rail ends to got in any case.
(4) It should be economical (minimum initial x maintenance cost).
(5) The rail joint should be strong x stiff.
Types of Rail Joints -
(1) Supported real joints:-

When the rail ends rest on single sleeper called as a joint sleeper is termed as supported joints.

(2) Suspended Joints $\begin{gathered}\text { Jontleeper }\end{gathered}$.

Suspect
When rail ends are projected beyond sleepers called shoulden sleepers. It is termed as suspended joints.
(3) Bridge Joints-

为

(9) Expansion Joint -

There for expansion in rails the gape. is 2.2 cm for meter joint.
Purpose of Welling-
(1) To increase the read length of To increase
rail by join two or more rails. Creep. of rails -
damaged rails
(2) To repair the
(3) To built-up the bucent portion of rail head.
(4) To built up worn out points and rails on sharep curves.

$$
1+\begin{gathered}
13 \\
-\quad 31120 \\
\hline
\end{gathered}
$$

Advantages of welding Rails
(1) To reduce the creep due to increased in the length of rail and in term friction as well.
(2) Expansion effect due to temperature is reduced which in term also reduces the creep.
(3) Long roil lengthe being havien than dampens intensity of high frequency
vibration.
welding facilities track circuiting on electrified tracks.
(f) Welding increases the life of rails due to decrease in the wear of rails at joints.
(6) The cost of track construction by welding of reails decreases due to less no. of reailjoints.

It is defined as the longitudinal movement of reails with respect to sleepers in a track.
\rightarrow Creep is a commonly occuring factor in all rail tracks but, wearing in magnitude considerating.
Causes of crees -
(A) Wave theory -or wave action:Wave motion is set up by moving loads of wheels.

(B) Percuetion theory -

This theory states that the creep is due to impact of wheels at the rail end head at joint
$\begin{array}{ll}\text { (4) } & (0) \\ 5 & 0 \\ 6 & \pi \\ 0 & 8 \\ 8 & 8 \\ 8 & 8 \\ 6 & 3 \\ 3 & \xi \\ 6 & \xi \\ 8 & 3\end{array}$
t t

(D)

Sleepers

Functions of sleepers

(1) Holding the rail in the in correct gauge a alignment.
(2) Giving a firm and even support to the reals.
(3) Transtereing the load evenly from the V rails to 2 wider area of the ballast.
(4) Providing Longitudinal $\&$ Lateral Stability to the permanent way.
(5) Acting as an elastic medium between the rails and the ballast to absorb the blows and vibrations
caused by moving loads.
$\frac{\text { Requirements }}{\text { Initial as well as the }}$ sleeper
(1) Initial as well as the maintenance cost should be minimum.
(2) The weight of the sleeper should be moderate so that it is convenient to handle.
(5) Sleeper should be such that it is possible to maintain and adjust the gauge property.
(4) The designs di the steepen
and the Anstening should be
such that it is pose lb) to fix and remove the rails easily.
(3) The steepens should have sufficient bearing area a sothat the ballast unbelnit, is not crushed.
(6) The sleeper should be capable of resisting vibrations and shocks caused by the passage of fast moving trains.
(7) The sleeper should have anti-savotage and anti-theft features.
Types of sleeper-
(1) Wooden sleeper-

Advantages
(1) These areecheepen
than other ?
ency tomanutacture.
(2)
(2) Light in weight
thees easy to
transport \& handle transport \& handle.
(1) Life span is very

Disadvantages less compare to
(2) Weak - against fire:
 (termites)

(3) fastenens can be easily installed. (4) Suitable for any type of gauges. reail section. (5) Well suitable for coastal area. high speed rails. Advantages. (1) They have economical. (2) They have good fire fire resistanke. (4) Conkrete oleepers sle eper. ane heavien than all othen types (4) Poor creep resistance. (5) High mainterance (2) Concrete sleeper - These are most suitable ton \rightarrow Most of the concrecte sleepene are made from pre-struessed concrete. life span so Disadvandages (11) Damage may occur while transporctation. (2) Because of (3). Corrasion isnot handking is OCCur in concrete difficult. (3) For tracks on brid ges and at sleepens crossith concnete ane	Hence gives good not suitable. stability. (5) Buckling istrength is more. (6) Concrete is good insulaton \& suitable to all tupes of soil \& nolistureconditions. (3) Steel sleeper- Advantages easy to transport. chemicals. (2) They are recycleable hence possels good scrap value. (3) Good resistant against firce \&. vermins. (4) Life span is. larege laaded maintenance. $D t-221120$ (1) These are light (1) Can be casily. in weight sol effected by easy to transport. chemicals. hence possers creep and more than 30 yos. (5) Siritrable for high speed 8 tracks. (2) Requires high (3) Not suitable fon all types of ballast, rail section \&gruges. (4) Derailment is very dangeremes in this case.

help to protect the top suerche.
of the form Requirement of good ballast.
(1) It should be able to withstand hard packing without disintegration.
(2) It should nt make the track dusty or muddydue to poioden under diagidynamic wheel loads.
(3) It should allow fore easy drainage
with minimum shokage and the voids should be larege enough to prevent capillary action.
(4) It should offer resistance to abrassion \& weathering.
(5) It should rit produce an chemical action with rail and metal sleepers.
(6) The size of stone ballast should be 5 cm fore wooden sleepers, 4 cm for metal sleepers and 2.5 cm for turnout $\&$ cross oven.
(F) The ballast should be available in near by quarries.

Types of ballast-
(i) Broken stone -
\rightarrow These are the best material
for ballast as they possess non. porous, hared $\&$ congulan which docent flake when broken
\rightarrow Ignecious rocks such as hardtroek, quarzzite and granite make excellent ex track in India.
(2) Gravel- (Riven pebbles on shingles)
\rightarrow These are obtained fromeithen river beds onfromgravel pits.
\rightarrow These stones posses best drainage
\rightarrow It requires greater cousinond also requires ballast wall to prevent spreading.
(3) Ashes ore shingles -
\rightarrow These type of ballast material prevents regetaibe graith and possesses fairly 1 drat an age.
These are mainly used incas
\rightarrow These are mainly used material is available in larege quantity in short time for retaining

due to impact expansion contraction.

The standared section firn fish plate used in India is the bone section fish plate. In order to increase the strength of firs plate. The depth of fish Nate is increased. Thus, other section of fish plates are also used widely.

The failure of fish plate is due to wear of ore abbreasion on top of fish plate \& also because of cracks developed at fish holes extend de towards top of fish plate \& vice versa

Fish bors -

Dt-291120
The fish bolts are made off medium or high carbon steel. for 44.70 kg rail a bolt of 2.5 cm dial and 12.7 cm length is
Generally the length if bolt depends on type of fish plate. Too much tightening of fish bots is prohibited as it prevents free expansion \& contraction of rails.
Generally a projection of 6 mm of the shank area is left out after the nut is tightened.

Grade compensation on cureve. In order to avoid the resistor. beyond the allowable limit the gradient is reduced on curve: and known as grade compensation on curves.
The grade compensation is differso on different gauge.

$$
\begin{aligned}
& B G=0.04 \% \\
& M G=0.03 \% \\
& N G=0.02 \%
\end{aligned}
$$

Super elevation

To counter act the effect of centrifugal. force the level of outer hail is raised above the inner rail by a certain amount to introduce the centrifital force. This raised elevation of the outer rail about the inner rail on a horizontal curve is called
as super elevation or cent.
There are limits to the amount if super elevation that can be provided on a curve. The maximum value of super elevation according to the railway board is 1/10 th of the gouge (tricorn $1 / 10$ th to $1 / 12$ th if gang)

Necessity of SE-
$e=\frac{G V^{2}}{127 R}$

$$
\begin{aligned}
& G=G \text { auge }(\text { in } \mathrm{m}) \\
& V=\text { in } \mathrm{kmph}
\end{aligned}
$$

(1) To introduce the centripital force for counter acting the effect of centrifugal force:
(20) To provide equal distribution of wheel load on two rails
(3) To provide and even and smooth running track to ensure comfortable
ride to
the passangen ride to l the passanger

- It is also
type switch,
(1) fix hill type switch

This is also called as type or flexible type of switch - The fix hill type switch is suits
(ii) Undercut switchIf the height sf stock and desirable to cut out a portion off flange. If the stor ct rail so tee of the tongue rail is,
accomoted under the head of stock rail. These are generally used in narrow
gauge rail. gauge rail.
Tongue \rightarrow stock rail
(1V) Over $\frac{\text { rifting switch - }}{\text { In these }}$
In this type of switch separate rail are addopted.

- The tongue rail in this type rider
- The flange of stock rail such switches are termelal as over ridgy
switch.

It is ggresally used for EG \& MG trace
(i) Straight oct switch-
In his type the ton aus cost straight in the line with the stock redil. This type switch i:
suitable for bull fieaded coils
-This is done to increase the
thickness of toe of torque rail
Tongue

straight
cut switch

Assignment

(1) What is grade compensation and write the standared value compensation fore MG.
(2) Determine causes if bulking of rad what is bulking of ring of
(3) Write down the function of checkreail. A wing rail.
(4) Deffecientiate before
(5) Flat cant-axis i Bullheaded coil

[^0]

$\theta \quad$ (D)
(山)

MRP,Civil,SDTE(O)

Daily maintenance Daily painter maintenance is carrie, \rightarrow The top surface should be kept out by the full time stacy throrighdut the year.
\rightarrow In this kind of maintenance
rail tracks are divided oles to different sections each up to 5 to 6 kms . where each one section is attached with 1 set up workers.

Periodic maintenance -

It is carried out after an interval of one to two years. During this maintenance the points \& crossing, garage, level, alignment $R t c$ are thoroughly checked. And the defects are identified and the cavies are determined, remedial measures are also done.
\rightarrow The maintenance of track includes the following items of maintenance.
(a) Surface of rails
\Rightarrow The maintenance ct sureftece of rails involves the following operations.
(1) Packing
(2) Surfacing the track
(B) Boxing 2 stressing of track
(4) Levelly.
(5) Lifting of the track
(b) Surface defects $\&$ remedies
(1) Packing is the
packing stone ballast below the Sleepers by ramming.
The width if packing it ballast under the skeper are as tolling
(1) Broad
(2) Meter gauge -35.6 cm .

The depth of ballast to be provided is usually 5 cm to 7.5 cm .

Q Bucking of tracks Under hot weather condition. when the track goes out of alignmenton curves under tightened fish plates or insufficient gapes in expansion joint it is called as buckle, of track. It
(6) Cored bound

The deflection of sleepers is more at the ends than at the centrebecause of therolling toads on the tracks.
This defect is called as centre bound track.
(6) Hogged rails -
(-) Correngated or rearing rails-
(8) Spot specking \& track lifting.
maintenance of track alignmentalignment that is shift side base on the straights or at curves due to the following reason -
(1) The increased hammering action of the wheals on one rail only rete may displace the orighal alignment of the track.
(2) Due to hammering action of coneels cads on the ends of forward rails.
(3) Due to variation if centrifugal force.
(4) Due to temperature variation in hot weather.
(c) Maintenance of gauge The uniformity of gauge throughout should be property maintised then to provide a proper gauge.
The variation to following causes
The loosening of track finis which results in sse widening of the gauge.
\rightarrow The frack gauge becomes irregelin with the passage
of timemainly ale to loosening of sleeper fitting. * Sone special devices ane used to maintain uniform gauge at some interval. wooden sleeper tracks, those are gauge rod \& rail bracing. of proper drainage-
(d) Maintenance most important to Drainage is mos riding a longer
ensure smooth track. life of the track.
The drainage property of the track
can be maintained byoclearing of ballast.
(4) Surface drainage.
(111) Underground drainage
(e) Maintenance of track componentIts maintenance includes
(1) Renewable of retail removal of the rail is done under heavy traffic \& its maintenance shall be done regularly.

Maintenance of sleeper-
The sleeper maintenance
can be done by spot
renewable \& thorough renewable.
(break the sleeper 8 change it)
(3) Maintenance of fittings It includes lubricating the fish plates 2 fish bolts periodically.
(f) Maintenance of bridges I This can be divided into the following
sub division.
(a) Maintanance of foundation.
(b) Maintenance of substructure
(c) Maintenance of super structure
(a) Maintenance r of track on bridge.
Maintenance. of bridges and its approaches it of greater importance
because if any accident occurs be cause it any may fatter and
at this spot it
may result into huge lass of life
and rational property.

* If the span of bridge ore on and
of brodge is $\leq 6 \mathrm{~m}$ than is is called as culvert.
* from 6 m to 30 m is called as minore bridge.
* 730 m is called majore bridge

Classification Al Al Aroreding to Hexibility If superstrucctane
(2) fixedspan

According to 1 Possition bf bridge floor relative(1) Deck bridge
(2) Through bridge
(3) Semi theough bridge,
(c) According to Inter span relation(1) Contineous
(2) Cantilever
(d) Accoreding to type of superstructure-
(1) Suspension Bridge
(2) Rigid frame Bridge
(6) Accoreding to
(1) Conent concrete
(2) Steel
(3) Timber
(7) Accoreding to utility pereiod:
(1) Permanent
(2) Temporal
(9) Accoreding to function
(2) Raild
(2) Railway
(4) Pipeline
(h) Accoreding to method of connection
(1) Pin
(2) Weidedi
(3) Rireted
(1) Accoreding to kength of span
(1) Cutvert
(2.) Major bridge
(1) Accoreding to degree of redundancy.
(1) In determinate
(2) Determinate.
(k) According to alignment
(1) straight
(2) Skew
(1) According to level crossing of nigwody \& Railway.
(1) Over bridge (Road over railway)
(2) Under bridge
(Railway over road)
(M) According to IVC loading.
(1) Class AA
(2) Class A
(3) Class B
for railway major bridge $>12 \mathrm{~m}$ minor bridge $<12 \mathrm{~m}$
chi
Selection of Bridge site -
(1) Connection of 'Roads
(2) Freeboard (1 ft to 3 ft)
(3) Embankment
(4) foundations

(b) Materials \& Labour
(7) Minimum obstruction to waterway
(8) Right angle crossing
(9) Scouring \& silting
(10) Straight streach of Riven
(11) Velocity of flow
(12) Width of River

$$
\begin{aligned}
& \begin{array}{l}
v_{s} l \rightarrow v_{f} \\
v_{f}>v_{s} \text { No silting } \\
v_{f}<v_{s} \text { silting }
\end{array} \\
& \text { velocity } \rightarrow \text { greater - scouring } \\
&
\end{aligned}
$$

Bridge alignment-.

$$
D t-3 / 3 / 20
$$

Flood Discharge

Empirical
formula
(2) Rove's Formula

Dickens (N.I)

$$
\begin{aligned}
& Q=C M^{2 / 3} \quad \text { India) } \\
& C=6.74(\text { area }
\end{aligned}
$$

formula

$$
\begin{aligned}
& \text { formula } l^{3 / 4} \\
& Q=C M^{3}
\end{aligned}
$$

$$
=8.45(24-161 \mathrm{~km})
$$

$\left(\mathrm{m}^{3} / \mathrm{sec}\right)$
$M=$ Area of catchment (sake)
$C=$ constant
North India $=11.37$
ContralIndia $=13.77-19.28$
western India $=22.04$

For small Areas
(1) $Q=123.2 \sqrt{M}$
for area beth (160 topookm²)
(iv) $Q=123.2 \sqrt{M}-2.62(M-259)$

MRP,Civil,SDTE(O)

MRP,Civil,SDTE(O)

High level bridge - $600 \mathrm{~mm} f_{E}$
Arch bridge- 300 F Navigational stricams - $2400-3000 \mathrm{Fe}$?

Collection of bridge Design

(1) Frobere General Data
(2) Catchment area \& Runoff Data (3) Stream
(1) General Data-
(a) Name of Road \& its clasituons (B) Name of stream
bench mark
(d) Chainage at centretine of stream. (2) existing arrangement for crossing
the stream.
(2) Catchment area \& Runoff Data-
(a) Catchment area
(b) Maximum recorded intensity \& frequency of rainfall.
(c) Rainfall in cm per year.
(d) Length \& width of catchment (c) Longitudinal is cope of catchment
(8) Naturic if catchment
(9) Presence at aretiticial or Natural
(6) Possibility ch charge in rations
erecosionstc.
(a) Type of soil present in the bonks -f river.
(B) Stream can be perennial on
seasonal.
(6) The extend of mendering of
river.
(4) Banks at the proposed bitt.
(0) Nature e of stream in the bosinity at the proposed site
(1) Low water level
(9) Ordinary flood level \& high flood level.
(h) RL and location of maximum scour previously occurs.
(1) Bearing capacity if the strata. (3) Angle of internal friction, cohesion $\&$ angie if
skin friction.
(1) Skin friction.
Clearance required forenavigetes
streams.

$\frac{\text { Data regarding }}{\text { approach - }}=\frac{\text { alignment }}{\text { Dt-11/3/20 }}$ approach -

 (2) Proposed type of superstircuctune can be square or skew.选Superstructure data:-(a) Proposed width if toot path cycle track and clear road why.
(b) Gradient of the road, camben, side distance and formation level of the road over the bridge at the sectors.
(3) foundation, data:-

The type of foundation that can be adopted are open foundation, well foundation., arshy pile foundation.

Scouring Bridge foundation
the limiting velocity which the
areodable particitas of bed material can stand, the souring occures.
\rightarrow The normal scour e depth is the depth of water in the middle if the stream, when it is scaring peak flood discharge.
For safe $\&$ sound design of a bridge it is important to Measure scour depth either by practical ore theoretical methlads.
Soccer depth of Alluvion stream:
Scour depth $d=0.473\left(\frac{Q}{f}\right)^{1 / 3}$
Chinear
waterway $Q \rightarrow$ cumpersec
not less than
Heme wide)

$$
\begin{array}{r}
d_{1}=d\left(\frac{W}{L}\right)^{0.61} \text { (less than fegire } \\
W=D_{\text {in }}=d
\end{array}
$$

$$
\begin{array}{ll}
d_{1}=\text { Norenal depth } \quad & W=\text { Regime width } \\
L=\text { Len th of ware. }
\end{array}
$$

$$
d=\text { Regime depth }
$$

MRP,Civil,SDTE(O)

* Well Foundation:

Ot is also called as open caisson. Well foundation is a hollow - cylinder made of concrete open at top \& bottom. These are e used on sandy or loft bearing stratum liable to scour \& velure no firm bed is available for large depths below the eurfecce.
sinking of well
In cave of well sinking on dry grounds, an open excavation unto half metre above subsoil watere-level in carried out \& the well curbs. laid. If the wells are to be lunk midstream, - a suitable cofferdam is constructed around the cite of the well \& islands are e made. wooden Peepers are inserted below the cutting edge at regular interval so as to distribute the load. Initially the well steining should be built to a height not more than 5 m , the well is sunk by excavating material from in ide under curs. After linking of one stage is complete all the damaged portion of the seining at the top of the first stage should be repaired.
passion:
It is a type of cylinder (hollow) which may ore may not se open at tue bettor stop.
(i) Box Carrion:

Bore is apensat top but clored at bottom. It may be made up of RCA steel or timber. Box carrions are prepared under the following conditions. when depth of the water is more than 6-8 m . When bul materials consist of soft are loose material. The velocity of flow is not large.

(ii). Open carrion: - well foundation
(iii). Pneumatic Carrion:-

It is open at bottom \& closed at top. This is useful at locations where it is not possible to adopt wells. They are e citable nohen depth of water is more than 12 m . In this the compressed air is used to remove water from the working chamber is the foundation work is carried out in dry conditions.

* Cofferdam:

It is a temporary structure nehich is built to remove Water from an area \& make it porveble to carry on the construction wort under reasonably dry conditions. It is neurally required for' project such as dams, locks \& construction of bridge piers \& abutments. Types of cofferdam:

1. Earth fill cofferdam
2. Rock fill cribs n
3. Rock fill cofferdam
4. Double walt n
5. Single wall u
6. cellular "

Th. 10 Bridge Substructure \& Approaches

* Types of piers:

(a) Solid piens
(b) Open piers

(c) Multiple
(d) Pile bent bent
(e) Cylindrical
(6) Trestle Piers
* (a). Solid pies:

It may be constructed either of maranon ore mas concrete. The pier top is kept 1 to 1.5 m above HFL of the river or stream as free board. The top width of the pier should be efficient to accomodate HFL the eats of two bearing and a clearance of 15 em. The pier ends are shaped fore easy parrage of water. The pier cap covens
 the entire area of the top of the pier sp projects 7.5 cm beyond the pier dimemion The pier cap is built of $R C C$ which corresponds to M/50 - grade contrite.
(b) Open :piers:
(i) Multiple Bent:

They are often used on ground. It is needed in overpass work where traffic rums parallel close to the bent to reduce damage to the columns in case of accident. It is lighter \& may be more

Scanned by CamScanner
economical than the solid pier.
Piexcap
(ii) Pile Bent:

It is med for low piers over unstable ground. They comment of RCC/steel piles driven into lhe-ground, provided with a capping at their top
 to support the main girder.
They are laterally connected by RCC or steed braces. The pile is used both fore a support by driving to resistance $\&$ for a colum en by projecting above ground.
(iii) Cylindrical piers:

They consist of mild Steed or cast iron cylinders which are filled with concrete. when cylinders, are used for bridges of greater widens two
 - Cylinders are lunk a light dietance apart is suitable bracing is provided.
(iv). Trestle pier:

They are used fore temporary work \& fore timber work. They are made up of $R C O$ on steel verticle, horizontal \& diagonal members. In order to avoid moments transferred from deck
 concrete hinges are intoduced between the top of. the columns the bent cap.

* Abutments:-

These -are the end reports of the superstructure, retaining earth on theirs back. They are built either with malory, stone or brick work ore RCC. The water face of the abutment is usually kept verticle or -given a batter of 1 in 12 to 1 in 24 . \& the earth retaining face is given a batter of 1 in 6 .

Types of Abutment

\rightarrow Buried Abutments
\rightarrow Box Abutments
\rightarrow Tee Abutments
\rightarrow Straight wing walls
\rightarrow Splayed wing walls
\rightarrow Return wing walls.
\rightarrow Arch Abut medals
(i). Abutment wilnout wing walls:
(a). Buried Abutment:

This type of abutment is generally built prior to the placing of the fill. Since it is filled on both rides the earth
 pressure is low. Superstructure erection can begin before e placement of fill.
(b). Box Abvelment

This employs a short span of bridge built integral with columns to act as a frame \& resist earth pressure of the approaches. It is most often used for
 overpass work. where the
short span may be employed for pedestrian passage.
(c). Tee Abutments:

This type of abutments looks like T is plan \& has now become obsolete. It is usually not recommended because
 it doesn't protect the embankment of river, it is uneconomical, etc.
(d). Arch Abutnients:

This type of abutment is need nehere arches care employed because of their economy in-ceretain conditions. The high inclined

Tiebas. skewback throes are difficult to handle unless the abutment can be seated in rock. Thus they are often used fore span over e gorges.

* Wing walls:-

There aree the walls provided at both ends of the abutments to retain the earth filling of the approach road. These are constructed with the rake material as those of the main abutment. Dep Jhypes of wing walls

\rightarrow Returen wing walls MRP,Civil,SDTE(O)
1)* Straight Wing Walls:

These are unstable fore small bridges contruded across drains with low banks. Generally thor are built for a railway bridges specially in -ibis. where the coot of the land is high. In cave of hard s rock foundation, the wing walls may be constructed in steps. When the soil is loose, the foundation would be taken to a uniform depth.
(iv) * Splayed Wing Walls:

They are constructed - generally at 45° wilhabutment ts are e straight or curved in. plan. They provide a smooth entry \& exit to the flowing.
water. They are best milted fore the crossing of a river. They-are also adopted when the road has to harrow on crossing the bridge.
iii* Return li ling walls:
These are walls built at right angles to the abutment at its both ends. They are designed to retain the earth filling of the approach Mold. There are mixable whore
 the banks are high \& rocky.
These ares adopted nehen the cost of the land is high.

* Approaches:-

The approaches are the lengths of the communication route ot both ends of the bridge. As pere IR.C the minimum length of the approaches shall be 15 m on either cliche of bridges. In cave of horizontal or vertical curves the necessary lengths can be provided as per IRC beyond the straight length.

* Types of Approaches :-

Fore different bridges based on reffed the approaches are provided in embankment while for rubncercible bridge \& causeways they ave provicted in wetting.
\rightarrow Sometimes for better substructure e the bridge is extended into the banks for sone distances. this extended portion
 may not be came as the bridge proper.
\rightarrow In urban arecas velure land is costly, the approaches are made of retaining walls constructed on either end of road widters.
\rightarrow In case of arech \& suspenion bridges, it is economical to cover only the central major portion of bridge. The approaches in much caus may be provided in the form of levies of small spans from the banks to mainstructure.

Ch-12 Culverts \& Camensays:-)

* Culvert: \rightarrow

It is a unall bridge fore carrying water beneath a road railway. It is wed when the linear waterway does not exceed 12 m . The waterway is Provided in 1 to 3 spans. In care of rood culvert, pan is limited to 5 m in length, vehereas in case of railway span is limited to 6 m . The common types of culverts are clarified as follows:
(i). Arch Culvert:

It consists of abutments, wing walls, parapets \& the foundations. The construction materials commonly wed are brick work or connate.

(ii). Slabculvert :-

It Consist of $R C C$ Mab witicts ore without beams ore a stone Mab. The deck Mab should be designed as oneway Mab. The culverts on important highways should be designed for IRC class AA track vehicle.
(iii). Pipe Culvert:-

There are provided vehen discharge of Stream is unall ore vehen sufficient headway is not available - usually one or more pipes of diameter not lars

Scanned by CamScanner
than 60 cm are placed ride by ride. The number Ind diameter depends upon discharge \& height of bonk. A bedding should also be-givon below the pipes \& earth -cushion of efficient thickness on the top to protect the pipe is their joints.
(iv). Box Culvert:-

They complies one ore more number of rectangular or square openings. Those are adopted to distribute the load to a wider area. The abutment top \& bottom slabs are all made into a monolithic rigid frame as inouen.
 The height of vent-shall be not greater then 3 m . There are provided wilt splayed wing walls. to retain the embankment.

* Causeways $: \rightarrow$

It is a pucca dip welvich alloues floods to pass over e it. It may ore nay not have opening on vents for low water to flow. J here -are tho types of causeways ie. Low level causeway and high level camenays.
(i). Low level. Causeways:-

The beds of hemal rivers ore streams helich remain dry for most part of the year, are -generally passaisle without -a Bridge. It is alto knouen as Irish bridge. This involves heavy earth work in cutting for bridge approaches. To prevent against pouible scour undermining a cut off ore dwarf wall ustally 60 cm deep on the up stream side \& 120 to 150 cm on douenstream side is provided, The low level causeway

Dwarf Wall
could be provided with openings formed by concrete lume pipes, in case of monsoons under continuous flow.
(ii). High Level Cameeway: -

It is submersible road bridge decigered to be overtopped in floods. Its formation level is fixed in ruch a way as not to cause interruption to traffic during floods for more than three days at a lime not for more than lix lines in a year. If the bridge has vents for low water to flow then it is known as high level causeway ore submersible bridge. A sufficient number of openings are provided to allow the normal flood discharge to pass through them with the required clearance.
ch- -11 Permanent Bridges

* Masonry Bridges:

These are very commonly used for road bridges of moderate pan. Thees are three lasses of masonry arches ie.
(i) Stone. Masonry arch.
(ii). Brick masonry arch.
(iii). Cement Concrete masonry arch.

Arches vary in chape from very flat to very having a rise greater than a epan. The common types of arch shapes ares legonetal, semi-circular, elliptical, parabolic, pointed \& multi centred. Elliptical \& parabolic arches are not co strong as regimental hype \& ate more difficult to construct. Shes the segmental arch is more popular \& generally wed fore maconry bridges for median span length.
*. Steel Bridges:
These are e built feer many purposes carrying a highway, - mailivay track, etc. The steel bridge is generally aclopted because of the following advantages:

- High quality material
- Speed of construction
- High tensile a compressive etrength.
- uniformity.
- can sustain fatigue.
- High strength to weight ratio.
- Jollones Hooke's Lave.
- Can early be modified.

Types of Steel Bridges

(i) Beam Bridges:

In cave of beam bridges rolled steed I-beans with or without cover plate are ueed-as main -girders. The cross I -beams act as bracing for the main I -beams. These bridges are used fore culverts. This type of construction has the advantage of speedy erection.
(ii). Truss Bridge:

A trues bridge is economical for spans -greater than 30 m and are likable for span range of 40 to 375 m . The primary forces in its members ane axial forces. Its erection is considerably simple because of the relative lightness of the component members.

Parker Truss

warren deus
(iii). Plate Girder:

It is just a built-up beam to carry heavier load over longer spans. This cimplest type of riveted plate girder convicts of pair angles connected to solid webs plate. There bridges can be used as curved or continuow bridges for urban highway structures like flyovers.

(iv). Box girder Bridge:

Fore better lateral stability the box girdere which consists of four plates connected by angle irons are used. The box giredere can be made more stronger by wing more than two webs \& also by using more cover plates. Box -girder bridges have exceptional torsional rigidity a better transverie load distribution.

(1). Cantilover Bridges:

These are provided over e cleep valleys where it is not possible to have any centering. They are also citable at locations velure foundation bed is liable to little. Under the load. There are to types of. Cantilever Bridges.
(a). Unbalanced type Cantilever Bridge: in this the height of the bridges goes on decrealing towards the free end from the fixed end.

(b). Balanced type Cantilever Bridge: in ebris one portion of a pean is mupended from ore rests over, ore is hinged with other portion or portions.

(vi) Arch Bridges:-

Steel arch bridges are generally adopted fore pans bettocen $30 n$ \& 150 m . They convict of trusses ore plate-girders wed in form of ureved beams called arch ribs. They may be two hinged ore three hinged. In case of through ts reni-through ret arch bridges, the construction is similar to a RCC bow arch.

(vii). Cable Stayed Bridge:-

These bridges provide a larger width for purposes of navigation by eliminating intermediate piers. They concent of cables provided above the deck \& are e connected to the towers. The deck in care of. cable stayed bridge is either supported by a number af cables meeting in a bunch at the tower. The multiple cables would facilitate smaller distance between points of supports for the deck girders. This results in reduction of structural depth.

(viii) Suspension:

These are used in places where it is difficult to adopt other types of bridges. This are generally single pan bridges. There are two maun cables on each eide of the roadway. They are carried over solid piers are securely anchored to the banks. The roaduncy is upended from two main cables by nuance of cuependers. Sometimes two ride ens are also added which may or may not be supported by ruepencion.
main cable

(ix) Movable hel Bridges:
movable spans of bridges are eometimes used over the navigable channels where permanent \& eufficient.char waterway cannot be provided. They are needed in order to provide a passage for the masted vessels ore steamers, heth the bridge is to be acreon a navigable river or dock. There bridges can be of following types:
\rightarrow Swing bridges
\rightarrow Bascule bridges
\rightarrow Traverser bridges
\rightarrow Treaneportere bridges
\rightarrow Lift bridges.

* RCC Bridge \rightarrow

Wien the introduction of $R C C$ construction it Was feet that this material would produce maintenance free Mructure. There are numerous types of bridges built in RCC. The following are in general wee:
(a) Slab Bridges:-

This is the simplest type of $R C C \cdot$ bridge \& earist to construct. This type is most suitable as lubmerrible bridge. It is mutable for spans up to 8 m . The cost of for em work \& labour is much less in cave of deck-slab bridges.
(b). Criredve Bridges:-

This type of bridge is economical for evans between 10 m to 20 m . Depending on the width of the roadway, following -aree the types of girder bridges: Pareapct-girdere bridges (there type of bridges are used for narrow width reoadioay), Tee beam bridges. (in those bridges the Tee beams function as main girders) \& Hollow girder bridges Cohere bridges are economical fore spans between 25 to 30 m \& they comprise of closed bax rection.

(C). Balanced Cantilever Bridge:-

A balanced cantilever e bridge consists of spans simply upported over cantilever. There can be wed for pans from 35 m to 60 m . In yielding river beds, where foundation,
are expenive \& emall spans ave uneconomical, it can be used with advantage. The carrection between the luepended span \& the edge of the cantilever is known as areticulation.

(d). Continuous Bridges:

They are used fore large pans \& velvere unyielding foundations are available, ar high stresses are introduced even if slight settlements of piers or abutments occur. The deck can be in the form of M labs, T-beam or box section.

* Composite Bridges:

Composite construction involves the combination of tue dissimilar materials into one efructiral element. Some of the advantages of this lope of bridges ares as follones:

- leads to epealy erection.
- better quality control.
- cost of form work is low.
- Leads to ravings in foundations for abutment
- leads to reduction in deflections \& vibrations.

A composite girder is comprised of steel beam with cover plates or buit up lection, cost in situ R.C. slabs \& elecare connectors.

Prestrussed Concrete Bridges:-
The inherent advantage of prestresed concrete bridges are the high load carrying capacity a fewer expation joints with light weight \& lost artistic treatment. This technique helps eliminate creasking \& is very effective in construction of long pan bridges because of its tensile strength. This technique reduces the maintainance cost, increases theas capacity of concrete, reduces impact \& vibration loads, et. where as the prestrecued concrete members recquire high tensile stead which is more expensive than ordinary mild real, and also requires special equipments like anchoress, jacks, etc for prestrcuing.

* Loads on Bridges : \rightarrow

1. Dead load :-

It is the weight of the structure $\$$ the weight of the portion of the uperefructure. Some bridges carry water on utility lines the nt may add wright.
2. Hive loader:-

These are further clarified as follares:-
(a). IRC class FOR loading:

This loading is generally aclopted et all roads on which permanent bridges \& culverts care constructed. This loading specifics a 70 tonnes tracked vehicle with the minimum spacing between vehicles as 30 m . Bridge designed for this loading should alto be checked bor claws A loading.
(b). IRC class AA loading: -

This boding corresponds to the class 70 R ie. specifies a 70 tonne vehicle both wheeled * Tracked (with spacing as 90 m). This leaking is generally aolopt ed within certain municipal limits. Bridge designed for Class AA loading should be -checked fore . class A loading.
(c). Class A loading:-

This load was proposed with the object of covering the worst combination of axle loads \& a a le epacinge likely to arise from the various types of vehicles that are normally expected to we the road. This loading is generally adopted on all roads on which permanent bridges \& culverts are constructed.
(d) Class B Loading: -

This loading is normally adopted fore temporary structures \& fore bridges in specified areas. Ir is similar to class A loading. It is generally applied to timber bridges.

[^0]:

