UGMIT RAYAGADA

$$
\begin{aligned}
& \text { Lecture Note } \\
& \text { Of } \\
& \text { HE, 4th Sem. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HE, 4th Sem. } \\
& \text { Prepared by } \\
& \text { Soumya Ranjan } \\
& \text { Maharana, } \\
& \text { Lecturer (Civil) }
\end{aligned}
$$

Highway Engineering
Ch-1 Introduction
Engineering Application of science
mathematics in the real mathematics in the real world.
Highway Engineering-
The planning, design, construction \& maintenance of res of and roadway maintenance il the need of traffic
facilities tull 1 is called Highway. engineering.
Importance of Highway:-
\rightarrow Roads are used by various types of road vehicles like passenger cares, buses, trucks, cycles etc.
\rightarrow Road transport requires a relatively small investment for the Gout. as compared to reailuays and airways.
\rightarrow Road treansporet offers a complete freedom to read users. ie. The Flexibility of changes in location, direction, speed and timings of travel.

- Road transport saves time particularly for short distance MRP,Civil,SDTE(O) Scanned by CamScanner
\rightarrow The road safety is basically less \rightarrow because of breaking the lane discipline as compared to raituays \& airways.
\rightarrow Road transports provide door to door service which is not possib. in the case of other mode of transportation.
Assignment - Ministry of surface transport. $D t-23 \mid 07119$ Indian Roads Congress (IRC)
\rightarrow IRC is a semi-official, technical body formed by central govt. in 1934 as a recommendation
\rightarrow The purpose of constituting IRC was, (into provide a common plat form for regular sharing and exchanging experience, ideas on matters relate to planing, construction \& maintenance If roadsin India.
(ii) To recommend of standard specification (a sect of rules \& protocols)
(ii) To. publish standard codes, journals, research publications related to designs of highways in India.

Is code of steel -800
\rightarrow The technical activities of IRC are mainly carried out by HRB (Highway. Research and commitee consisting of experts in different subject's.
\rightarrow It has played an' important role in formulation of three 20yre read development plans
\rightarrow It works in close collaboration with Roads wing of ministry of surface transport is Govt. of India. Central Road Research Institute(CRRI)
\rightarrow CRRI was constituated as per the recommendations of 'Jaykar Committee' as a central organisation of research Q disemination (spread) of information related to highways - in the yean 1950 .
\rightarrow The functions of CRRI are:
(i) To carry basic research tor design, construction and maintenance of highways
(II) To carry research on traffic safety \& transport economics.
(III) To carry research on economics Utilisation of locally available materials. for constritiction of highways.
(iv) To carry resew.
of new machinery, tools, equipments \rightarrow ines \& instruments fore highway enginkeria
(v) To provide technical advice (2) \& consultancy Services to various organisations.
IRC Classifications of roads.
According to IRC, roads are divided into 5 categories.
(1) National Highways $(N H)$
(2). State Highways Roads
(3) Major District (MDR)
(4). Other District RoadS (ODR) sta
(5) Village roads (VR)
(1) NH:
\rightarrow These are the major roads running through length \& breadth of India, Connecting major ports, foreign, highways, capitals of large. states, tourist centers etc.
\rightarrow All NBs are assigned of
respective numbers. The highway
connecting Deeterethi-Ambala-Amnisi
is denoted as NHA is denoteld as NHI.
The highway connecting Madurai-

$$
\begin{equation*}
\Rightarrow T \tag{4}
\end{equation*}
$$

Rameswaream is $N H=49$ \&
\rightarrow These highways posseses highest. design specification.
(2) SH-
\rightarrow These are, the roads of a state connecting the NHs of adjacent states, District headquarters of a state.
$\rightarrow N H$ \& SH have same design speed and geometric design
specifications. specifications.
\rightarrow Some times SH carry heavirn traffic than some of National Higheargs.
(3) MDR
\rightarrow These are the roads within a district serving areas of production and connecting those with eachothen or with the main highways of a district.
\rightarrow These roads have lover speed and geometric design specifications.

1) than NH\& SHT.
(4) ODR-
\rightarrow These roads comet rural areas, town centres to MDR of higher importance.
\rightarrow They provide facilities for transportation of raw materials or goods mainly of agricultural product's from rural towns to higher markets \& vice versa.
\rightarrow These roads have loweresign speed specification than MDR.
(5) VR:-
\rightarrow These are the roads connecting rural villages with one other:
\rightarrow They have design specifications \& speed lower than ODR.
\rightarrow Most of the roads are not even metalled (Stan chips * tare).
Organisation of state Highevay Department -
\rightarrow State highway plays a major role in economic development of people as it connects major and important places of $a_{\text {: }}$ state as well as neighbouring
states. Also development of states. Also development of activities in state as it connects major tourist places.
\rightarrow During the year 2013-14, Govt. has introduced a new scheme "State Highway. Development Programme" (SHDP) for development of existing 2158 km of state highways with an outlay of 3000 crone.
\rightarrow During 2017-18 the budget provision of RS -500 creare for development of for another 500 km of state highways.
Assignment -2 Dt-25/7119
Bring the road maps of Odisha XIndia to class.

Lt $-26 / 7 / 19$
Cross. Sectional elements cost righnuay

Scanned by CamScanner

Geometric Design of Highway
\rightarrow It deals with thestudy of dimensions and layout (arrangement) of various elements of higheoay.
\rightarrow Geometric design of highuacjs deals with (a) cross section elements
(b) Sight distance considerations
(c) Horizontal alignment '. details
(d) Vertical alignment details.
(e) Intersections:
$\frac{\text { Factors controlling Geometric design }}{\text { highway }}$ If highway-
Geometric design of higheracgs depends on: several. factors they are (1) Design speed:-

AASTHO (American association of state treansporet Highway officials)
\rightarrow AS per AHISTHO alesign speed is defined as the selected speed vised to determine various geometric features of read way.
\rightarrow It is the most impurctant factor controlling all geometric, alesign elements of highway.
\rightarrow In India different' design speed Standards have been assigned depending upon the importance/class of road. such as, $\mathrm{NH}, \mathrm{SH}, \mathrm{MDP}, \mathrm{ODR}, V R$.
\rightarrow Design speeds ane also modified based on tererai/topography of that place.
(IV) Topography.
\rightarrow Topography or terri conditions influence the geometric design of highcoay significantly.
\rightarrow For example - The design speed of NH\& SH on plane terrain with cross slope upto 10%. 100 kmph where as the speed on rolling terrain with cross slope unto 25% is 80 kmph \& that on mountaineous tercreain with cross slope unto 60% is 50 kmph . stiff -more than 60%.
\rightarrow So, as topographic ffeceet factors affect the design speed \& design speed controls all the geometric elements of highway, thus, topography affect the geometric design of higher al.
(III) Traffic factorthat control geometric design of highways are vehicular charactuis: and human characteristics of rood users.
\rightarrow Different classes of vehicles like passenger cars, trucks, buses, motor cycles etc have different dimensions and weights which affects the geometric design of highways. $\quad \mathbb{D t - 1 / 8 / 1 9}$
\rightarrow Also physical, mental, psycological characteristics of drivers and pedestrians controls the geometric design of highway. unto a great extent.
(IV)Design, hourly $\frac{\text { volume gcapacity - }}{\text { traffic that is tot }}$
(1) Volume' of treaffic that is totalno. of vehicles moving on the road fluctuates with. timereanging from a very low value during off-peak hours to a very high value during peak hours.
(II) So, It will be uneconomical to design the roadway facilities for peak traffic volumk/highest, traffic volume. Therefore, a reasonable volume of traffic volume is choosen from extensive traffic volume studies. which is called Design hourly volume, used to design all the roadway facilities.
(III) The maximum no. of vehicles that a particular roadway can accomodate is called capacity.
(IV) Also the ratio of volume to capacity affects the LOS of road.
(v) Environmental \& other factors -

Environments factors like. Assthetics, land scaping, ais pollution, noise pollution etc should be given due considenati: during geometric designs of highways.

Highway cross-section elements -
(i) Pavement surface characteristics.

$$
\begin{aligned}
& \text { Friction } \\
& \longrightarrow \text { skid } \\
& \text { slip }
\end{aligned}
$$

\rightarrow Surface unevenness
\rightarrow Light reflecting characteristics
(II): Camber /cross slope
(iii) Carriage way.
(iv) Traffic separator / median
(v) Kerbs
(vii) Road margin
\rightarrow Should en
\rightarrow Parking lane
\rightarrow frontage roads
\rightarrow Drive ways
\rightarrow Cycle tracks
\rightarrow Foot path/sidewalk
\rightarrow Guard rail
\rightarrow Embankment slopes
(vii) Formation width
(xiii) ROW
(9) Friction -

- Freciction between the vehicle tyre \& road surface plays a very important role in determining the operating speed and distance required in stopping and accelareating the vehicle.

Ante vine n vehicle slides The revolving of wheels, l. "he prop travelled by the Wheels of vehicle on the read will be greater than the circcumficencies movement of the wheels of vehicle.
\rightarrow It normally occurs on horizontal cures due to greater speeds after applying breaks partially on fully called lateral skidding.
(II) SLip-
\rightarrow It occurs when wheels revolve more than the corresponding longitudinal movement on roads, i.e Here circumferencial movement is greaten than the path travelled by the wheels of vehicle on the road.
\rightarrow It occurs when vehicle rapidly accelarates from slow speed on. stop positionor when road surface is muddy.
Factors affecting friction -skid Resistance-
(1) Type \& condition of pavement surface.
(2) Roughness of surface.
(3) Type \& condition of tyre
(4) Speed of the vehicle speed $\alpha \frac{1}{\text { friction }}$
(5) Load \& tyke pressure
(6) Temperature of pavement surface. (inverse)
(7) Breaking efficiency
(The extent to which wheels are locked /arrested on application of break)
As per IRC
longitudinal coefficient of friction $\begin{aligned} & \text { (stopping site. distance } \\ & \text { overtaking site distance) }\end{aligned}=0.35-0.5$
lateral coefficient of friction $=0.15$ (design of Horizontal curves)
(b) Surcface/Pavement $\frac{\text { unevenness - }}{\downarrow}$ not being a levelsurfoce comfort ψ, fuel consumption \mathbb{N}, operating speeds safety $\downarrow, \operatorname{VOC} \downarrow$

Vehicle operation cost - (owning operate + maintain repair)

- Bump integrator
- cm/km.
\therefore Pavement unevenness is commonly measured by using an equipment called bump integrator, in terms of unevenness index.
\rightarrow If unevenness increases then operating speed, \forall comfort, safety decreases i VOC, fuel consumption a wear $\&$ tear of Scanned by CamScanner
tyres increases.
\rightarrow Unevenness index is the cummulative measure of vertical undulations of pavement surface for unit horizontal length of road. It is measured in $\mathrm{cm} / \mathrm{km}$.
\rightarrow For a good pavement surface it should be less than $150 \mathrm{~cm} / \mathrm{km}$.
(c) Light reflecting Characteristics-
\rightarrow. White road surface lie, cement concrete roads have good visibility at night but causes glare during day time.
\rightarrow Black road surface i.e, Bitumenoies road has No glare during day but has poor visibility a lt night.
\rightarrow The glare caused by reflection of head-light is considerably more on wet pavement surface than on dry pavement surface.
\rightarrow It is defined as the transverse raising the middle portion of road better performance on road.
\rightarrow It is expressed in 1 in: n and $x \%$. $(x \operatorname{in} 100)$.
\rightarrow Objectives of providing camber -
(1) To dreainout rainwater from road surface as quickly as possible, so that The surface gets dry soon after rain, \& safe value of skid resistance.
(II) To prevent entry of water into bituminous pavement layers, as continuous contact of water causes stripping of bitumen from aggregates i.e, water loosens the bonding between bitumen deterioration of pavement layers.
(III) To prevent entry y of surface water into subgreade soil because the strength and stability of severefaces subgrade gets admenesly affected when infiltration
. Of water takes place through it.
\rightarrow The required camber of a pavement surfacdepends on (a) type of pavement surface
(b) Amount of rainfall.

IRC has recommended following values of camber for different types U. δf, road surface as shown in table beloul.

Range of camber

WBM \& Gravel
type pavement WBM-water Bound Macadam Earthen road
$\operatorname{lin} 33$ to 11140

1 in 25 to 1 in 3.3
\rightarrow There are generally 3 types of camber provided on roabl surface They are -
a) straight line camber
(b) Parabolic camber
(c) Combination of straightlines parabolic camber.
(a) Straightiline camber -

Normally these types of cambers are provided in PCC and RCC type of pavements.
(b) Parabolic camber-

$$
\Rightarrow y=\frac{2 x^{2}}{1 w}
$$

$$
\begin{aligned}
& y=\frac{2 x^{2}}{n W} \\
& y \propto x^{2} \\
& \Rightarrow \frac{y}{x^{2}}=\frac{h}{\left(\frac{w}{2}\right)^{2}} \\
& \Rightarrow \frac{y}{x^{2}}=\frac{h\left(\frac{w}{2}\right)\left(\frac{W}{2}\right)}{\left(\frac{W}{2}\right)}=\frac{1}{n \times \frac{W}{2}} \\
& \text { (} \because \frac{h}{n,}=1 \text { Mirsen }_{2}^{2} \frac{2}{2}
\end{aligned}
$$

These are generally provided for their better drainage property, but these are difficult, to construct.
(c) Combination of streaightline \& parcabolic camber -
These are also called composite camber.

It will decrease the intensity of pressure because Area incireases \& $P \frac{1}{A}$
(C) Width of Pavement / Carreaigeway

It is the part of a roadway oven which vehicles travel.
As per IRC standard width of a vehicle is 2.44 m assuming a side cleareance of $0.625 \mathrm{~m}^{2.5}$ on both sides the standard carcraige way width for a single lane road will be $2.5+0.625 t$
0.625

$$
=8.35 \mathrm{~m} .
$$

For reads more than 1 lane, the standard width of carraigewayisequal to 3.5 m per lane.

For example, width of carcraigeway for a 3-Lane, road $=(3.5 \times 3) \cdot \mathrm{m}$
\rightarrow The width of pavement/carereaigevigy depend upon following 3 factors They are: (a) width of the vehicle
(b) No. of lanes
(c) Side cleareance
Q) Determine the height of the crown of the road above the pavement edge fore a two lane cement concrete road in heavy rainfall region.
width of read for two lane

$$
\begin{aligned}
& =3.5 \times 2 \mathrm{~m} \\
& =7.0 \mathrm{~m}
\end{aligned}
$$

Range of camber. for cement concrete road in heavy rainfall region $=\operatorname{lin} 50$

Height of camber $=$

$$
\begin{aligned}
H & =2 x^{2} \\
& =\frac{2 x}{50 x+7}+0
\end{aligned}
$$

$$
h=\frac{w}{2 n}
$$

$$
\begin{aligned}
& =\frac{7.0}{2 \times 50} \\
& =0.07 \mathrm{~m}
\end{aligned}
$$

Q) Findout the height of the crown above the pavement edge fore a gravel read two lane highway in Low rain fall region.
width of road for two lane

$$
\begin{aligned}
& =3.5 \times 2 \\
& =7.0 \mathrm{~m}
\end{aligned}
$$

Range of camber for a gravel road in low rain fall region $=1$ in 40

$$
\text { Height of camber } \begin{aligned}
h & =\frac{W}{2 n} \\
& =\frac{70}{2 \times 40}
\end{aligned}
$$

$$
=0.087 \mathrm{~m}
$$

For two lane read Dt-91.8119.

Classification
(1) 1 lane road
(2) 2 lane, without kerch
(3) 2 lane with kerbs
(4) Intermediate carreaigeway
(5) Multi-lane pavement

Width of the carraigenary

$$
-3.75 \mathrm{~m}
$$

- 7 m
- 7.5 m
- 5.5 m
- 3.5 m per lane

Medians -
The main purpose of providing medians on the road is to prevent; avoid headton collisions between vehicles moving in opposite direction.

\rightarrow IRC recommends a minimum desirable width of 5 m per medians on rural highways, It may be reduced to 3 m . where land is restricted and on long bridges 1.2 m . It is reduced to $1.2-1.5 \mathrm{~m}$.

Kerbs

It indicates the boundary between carreaigeway and footpath Yore shoulder,
\rightarrow kerbs are divided into 4 types based on their height \& slope-
Low/moritable typelkers
(a) Low/mointable type kerb
(b) Semi barrier type kerb
(d) Barrier type Kerb
(d) Submerged type kerb
(a) Low/mountable type kerb-
\rightarrow Height $=10 \mathrm{~cm}$
\rightarrow These are provided to encourage the traffic to remain in the lane and also to allow the driver to enter into shoulder or footpath gaea in emergency with a little difficulty.
(b) Semi barriers type -
\rightarrow Height $=.15 \mathrm{~cm}$
\rightarrow These are provided when pedestrian traffic is high.

(c) Barrier type-
\rightarrow Height $=20 \mathrm{~cm}$
\rightarrow These are provided when there is considerable amount of pedestrian traffic.
(d) Submerged type -
\rightarrow Used in rural roads at pavement -'edges between pavementedge and shoulder.
\rightarrow These kerbs reovide lateral conferment and stability to the. pavement.

Road margin -
Shoulder -
\rightarrow These are provided along the raadedge that is adjacent to the cariniage way to serve as an emergency lame for pee vehicles that have broken down.
\rightarrow Minimum width of shoulder as pen IRC' is 2.5 m .

Lay-bye
\rightarrow These are provided adjacent to the shoulder near public convineance guide map/ facilities where vehicles can stop for a while without inter erupting the through traffic.
\rightarrow These are of 3 m width. and length 30 m .

Bus -bay-
These are designated spots on the side of read where buses stop for picking dropping passengers/goodswithout interrupting the through traffic.
Frontage read-(or Service road)
\rightarrow These are provided to give access to different properties like schools, colleges, temples, hospitals etc. along the highways.
\rightarrow These are also called Iserviceroads.
Drive ways
\rightarrow These, are, the roads connecting highways with commercial establishments like fuel stations.

Cycle track -
\rightarrow These are provided when volume of cycle traffic is very high.
\rightarrow Minimum width as per. IRC $=2 \mathrm{~m}$.
Foot path -
\rightarrow These are provided when volume of pedestrian traffic is very high.
\rightarrow Minimum width as per IRC $=1.5 \mathrm{~m}$ on either side of road.
Guard rails -
\rightarrow These are provided at the edge of shoulder constructed on an embankment, to prevent vehicles from running off (away) the embankment.
Formation width -
\rightarrow It is the sum of width of careraigeway including shoulders on both sides and Separators if any.
ROW (Right of way) -
\rightarrow It is the area of land acquired. for the construction of road, its elements as wrillias for future possible extension.
\rightarrow As pere IRC the recommended ROW pare NH \& SH on plain terrain is 45 m and max. RoW is 60 m ., where as the corresponding will thadbecitusDTE(O) Scanned by CamScanner

Building lines is 80 m and between control lines is 150 m .

$$
D t-1310 \mathrm{~g} / 19
$$

Sight Distance
Sight Distance -
How fare you can ser.
It is defined as the actual distance along the road surface that a driven from a specified height $(1.2 \mathrm{~m})$ above the careraigeway can see clearly any moving/ Stationary (rest) obstruction.
\rightarrow It is of 4 types.
(a) Stopping sight Distance (SSD)
(b) Over taking sight Distance (OSD)

$$
\begin{aligned}
& 1 \mathrm{inch}=2.5 \mathrm{~cm} \\
& 1 \mathrm{ft}=12 \mathrm{inch} \\
& 1 \mathrm{~m}=3.3 \mathrm{ft} \\
& 1 \mathrm{ft}=30 \mathrm{~cm}
\end{aligned}
$$

(c) Head light sight Distance (HSD)
(d) Intermediate sight Distance (ISD)
(a) Stopping sight Distance (SSD)-
\rightarrow It is the minimum distance available to the vision of a driver intending to stop the vehicle without colliding with any moving/ stationary obstructions.
\rightarrow As per INC, It is the distance between a moving vehicle with the eye level of the driver at a height of 1.2 m and an object of 0.15 m . So that no collision occurs if a situation arises to stop the vehicle.
\rightarrow Factors affecting SSD are -
(1) Total reaction time of the driver $(2.5 \mathrm{sec}$ as
(2) speed of the vehicle
(3) Efficiency of Brakes
(4) Friction between the tyre of the vehicle andreoad
(5) Gradient of the read, if any.
\rightarrow It is the time taken from the instance the object is visible to the are applied the instance the brakes are app lind effectively
\rightarrow Asper IRC, it is taken as 2.5 sec .
\rightarrow It ray be split up into two parts/(a) Perception time
(b) Brake reaction time
(a) Perception time -

Time interval from the instan ce object is visible to the driver to the moment when he/she realises that vehicles need to be stop/breakes should be applied.
(b) Brake reaction time -

Time taken to apply the brakes effectively
(11) Speed of the vehicle SSA \propto speed
SSD increases with the increase in speed of the vehicle \& vicetveres a.
(III) Efficiency of Brakes -

SSD $\alpha \frac{1}{\text { Brakengefficiency }}$
\rightarrow It is defined as the extentup to which the wheels are locked after applicatir of brakes.
\rightarrow It is inveresly proportional to SSD. 100% braking efficiency is undesirable. Because it will result in 100% skidding.
(Vv) Friction between tyre of the vehicle \& road surfer
A higher value of friction between tyree of H vehicle and read surface will require a lesser SSD and rice-hersa.
(v) Gradient of the read, if any -
\rightarrow CSD will be lesser incuse of an up grendient and SSD in higher incuse of a down gradient.

Formula of SSD -

$D t-1418 / 19$

Stopping sight Distance
$=\operatorname{lag}$ distance \downarrow Braking distance
Distance freavelled
by the vehicle during total reaction

$$
=(V m / s \times t s)+\frac{v^{2}}{2 g f}
$$

 by equating
Kinetic energy possessed by the vehicle with the work done against frictional resistance force between vehicle tyres read surctace.

equating, $k \cdot E=$ work done against frictional \quad resistance

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =\text { (frictional resistance) } \times l \\
\Rightarrow l & =(f \times m g) \times l \\
\Rightarrow l & =\frac{v^{2}}{2 g f}
\end{aligned}
$$

where, $v=$ speed of the vehicle in
$t=$ total reaction time of th. driver in sec.
$g=$ acceleration due to gravity $=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$f=$ longitudinal coefficient of friction.

$$
\begin{aligned}
& 1 \mathrm{~m}=10^{-3} \mathrm{~km} \\
& 1 \mathrm{hre}=60 \times 60 /=3600 \mathrm{sec} \\
& 1 \mathrm{sec}=1 / 3600=2.78 \times 10^{-4} \\
& 1 \mathrm{~km} / \mathrm{hre}=\frac{1000}{3600}=10.278 \\
& 1 \mathrm{~m} / \mathrm{s}=10^{-3} / 2.78 \times 10^{-4}=3.6 \mathrm{hr} / \mathrm{sec} \\
& S S D=
\end{aligned}
$$

Q) Calculate the min^{m} SSD for design speed of $50 \mathrm{~km} / \mathrm{hr}$. Assume coefficient of friction as 0.37 \&. Reaction time of diciven as 2.5 sec .

$$
\begin{aligned}
& V=50 \mathrm{kn} \rho \mathrm{~h} \\
& f=0.37 \\
& t=2.5 \mathrm{sen}
\end{aligned}
$$

$$
\begin{aligned}
S S D & =0.278 V t+\frac{V^{2}}{254 f} \\
& =0.278 \times 50 \times 2.5+\frac{(50)^{2}}{254 \times 0.37}
\end{aligned}
$$

$$
=61.35 \mathrm{~m} .
$$

Effect of slope i.e gradient.

$$
\begin{aligned}
& \text { Effect of slope } \\
& S S D=v t+\frac{v^{2}}{2 g\left(f+\frac{n}{100}\right) o .3}+2 \% \\
& E \text { Effect of braking efficiency } \\
& S S D=v t+\frac{v^{2}}{2 g f \times \eta} \text { Braking } \\
& \text { efficia }
\end{aligned}
$$ efficiency

Effect of both slope 8 braking efficiency

$$
\text { SSD }=v^{\prime}+\frac{v^{2}}{2 g\left(f \pm \frac{n}{100}\right) \times \eta}
$$

* For one way road, minimum sight distance $=$ SS
* For two way road,

$$
\begin{aligned}
& \text { for two way road, } \\
& S S D=S S D_{1}+S S D_{2} \\
& \text { for } 2 \text {-lane } S S D=S S D \text {. }
\end{aligned}
$$

* For 2 -lane 2 way, $S S D=S S D$.
Q) Calculate the SSD on a highway at a descending gradient of 2% for a design speed of 80 kmph . Assume other data Aspen IRC.

$$
\begin{aligned}
& V=80 \mathrm{kmph} \\
& n=2^{\circ} \text { (-Ne) }
\end{aligned}
$$

$$
f=3.5
$$

$$
\begin{aligned}
& t=3.5 \mathrm{sec} \mathrm{c} \\
& t=2.5
\end{aligned}
$$

$$
S S D=0.278 v t+\frac{v^{2}}{254\left(f-\frac{n}{100}\right)}
$$

$$
=0.278 \times 80 \times 2.5+\frac{(80)^{2}}{251\left(3.5 \frac{-2}{100}\right)}
$$

$$
=131.95 \mathrm{~m}
$$

$$
=132 \mathrm{~m}
$$

Q) Calculate the min m SSD. require to avoid a headon collision up two cares approaching from the opposite direction at 90 \& 60 kmph . Assume a reaction time of 2.5 sec , af of, 0.7 and a brake efficiency of 50% in either case.
For list case-

$$
\begin{aligned}
V & =90 \mathrm{kmph} \\
t & =2.5 \\
f & =0.7 \\
\eta & =50 \\
\text { Sex } & =0.278+\frac{\left(V^{2}\right)}{254(-2 \times r} \\
& =0.278 \times 90 \times 2.5+190
\end{aligned}
$$

$$
\begin{aligned}
& V=90 \times \frac{1000}{3600}=25 \\
& S S D_{1}=v t+\frac{v^{2}}{2 g f \times \eta} \\
& =25 \times 2.5+\frac{(25)^{2}}{2 \times 9.81 \times 0.7 \times 80.5} \\
& 153.51 \\
& =3.4 \mathrm{~m} \\
& V=60 \quad V=\frac{60 \times 1000}{3600}=\frac{16.687}{\mathrm{~m} / \mathrm{s}} \\
& S S D_{2}=16.67 \times 2.5+\frac{(16.67)^{2}}{2 \times 9.81 \times 0.7 \times 0.5} \\
& 82.14 \\
& z \text { 连20 } \\
& \therefore S D_{1}=S S D_{1}+S S D_{2} \\
& \therefore 153 \cdot 5182.14 \\
& =235.65 \mathrm{~m} \text {. }
\end{aligned}
$$

Q) Calculate the values of
(1) Headlight sight distance = SSD
(2) Intermediate sight $2 \times x$ distance for a highway with a design speed of 85 kmph . Assume any, other data
$V=65 \mathrm{kmph}, f=0.35, t=2.5 \mathrm{k}$ required. $V=65 \mathrm{kmph} \sigma_{,} f=0.35, t=2.5 \mathrm{sec}$

$$
\begin{aligned}
& \text { required. } \\
& H S S D=0.278 \times 65 \times 2.5+\frac{(65)^{2}}{\frac{2988 k}{254 \times 0.35}} \\
& \text { SD }=92.7 \times 2=185.4 \mathrm{~m} .
\end{aligned}
$$

(b) Overtaking sight distance:-

It is defined as the minimum distance available to the vision of a driver intending to overtake the slow moving vehicle ahead with satiety against the traffic of opposite direction.
\rightarrow As per IRC, it is the distance along the length of road, which a driver l with eye level at a height of 1.2 m above theroid surctace can see the top of an object of height 1.2 m above the rad surface.

$\begin{aligned} A= & \text { Overtaking, vehicle moving af does } \\ & \text { speed } v \mathrm{~m} / \mathrm{s} \text { or } \mathrm{V} \mathrm{kmph}\end{aligned}$
Speed $V \mathrm{~m} / \mathrm{s}$ or V kmph ?
slow moving
$\begin{aligned} B= & \text { slow moving } \\ & \text { speech lésensen senile moving at } x\end{aligned}$ speed lesser than design speed $V_{b} \mathrm{~m} / \mathrm{s}$ or V_{b} kph.
$C=$ Vehicle coming from opposite direction at design speed vm / s \& koph.

Total OSD $=d_{1}+d_{2}+d_{3}$
$d_{1}=$ Distance moved by vehicle A during the reaction time $(2 \mathrm{sec})$.

$$
\begin{aligned}
& d_{1}=v_{b} \cdot \mathrm{~m} / \mathrm{s} \times t \mathrm{~s}=0.278 \mathrm{~V}_{b} \times t \\
& d_{2}=b+2 \mathrm{~s} \\
& b_{1}=v_{b} \times T
\end{aligned}
$$

Asper $\operatorname{IRC} S=0.7 V_{b}+6$ on $0.2 V_{b}+6$
$S=\underset{\text { for safety }}{\min }$ spacing between vehicles
for safety

$$
\begin{aligned}
& S=u+4 \frac{1}{2} a t^{2} \\
\Rightarrow & b+2 S= \\
\Rightarrow & \phi+2 S=\frac{1}{2} a T^{2} \\
\Rightarrow & 2 S+\frac{1}{2} a T^{2} \\
\Rightarrow & T=\frac{1}{2} a T^{2} \\
\Rightarrow &
\end{aligned}
$$

where,
$T=$ total time taken for overtaking operation in sec.
$a=$ uniform n acceleration of the overtaking vehicle A during overtaking operation in $\mathrm{m} / \mathrm{s}^{2}$.
$b=$ distance moved by stow moving vehicle B during overtaking time.
$A=$ uniform acceleration of the overtaking vehicle in $\mathrm{kmph} / \mathrm{sec}$.
If, v_{b} is not then,

$$
\begin{aligned}
& v_{b}=v-4.5 \mathrm{~m} / \mathrm{s} \\
& v_{b}=o n \\
& V_{b}=V-16 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
d_{3} & =v T \text { opes ono.288vT} \\
O S D & =d_{1}+d_{2}+d_{3} \\
& =v_{b} t+b+2 s+v T \\
& =v_{b} t+v_{b} T+2 s+v T \\
O S D & =v_{b} t+v_{b} T+2\left(0.7 v_{b}+6\right)+v T
\end{aligned}
$$

where, V is the speed in m / s.

$$
\begin{aligned}
O S D=0.278 V_{b} t+0.278 V_{b} T & +2\left(0.2 V_{b}+6\right) \\
& +0.278 \mathrm{VT}
\end{aligned}
$$

Where, V is the speed in koph.

* For 1 way traffic

$$
\theta s D=d_{1}+d_{2}
$$

By
Assignment...
Explain PIEV theory.

Qvertaking zone -
The zones/stretches provided along the length of read meant for overtaking are called overtakingzones.

Minimum length of overtaking zone

$$
=3 \times \operatorname{OSD}
$$

$\begin{aligned} & \text { Design length of overtaking zone } \\ &=5 \times 08 D\end{aligned}$

$$
=5 \times 08 D
$$

$S_{1}=\operatorname{sign}$ post "Overtaking zone ahead" S_{2} = "sign post". End of overctakingzone".
Q) The speed of overtaking \& overtaken vehicles are 70 \& 40 kmph resp on a two way traffic road. If the accelefcation of overtaking vehicle is $0.99 \mathrm{~m} / \mathrm{s}^{2}$. Then
(1) Calculate safe OSD
(2) Mention minimum length of overtaking
(3) Draw a sketch of overtaking zone and show the positions (ff MRP,Civil,SDTE(O) Scanned by CamScanner

$$
\begin{aligned}
V & =70 \mathrm{kmph} \\
V_{b} & =40 \mathrm{kmph} \\
a & =0.99 \mathrm{~m} / \mathrm{s}^{2} \\
T & =\sqrt{\frac{4 \mathrm{~s}}{a}} \quad S=0.2 V_{b}+6 \\
& =\sqrt{\frac{4 \times 14}{0.99}}=14 \\
& =\sqrt{56.56} \\
& =7.52 \mathrm{secc}
\end{aligned}
$$

a

$$
\begin{aligned}
\theta S D= & 0.278 V_{b} t+0.278 V_{b} T+2\left(0.2 V_{b}+5\right) \\
& +0.278 V T \\
= & 0.278 \times 40 \times 2+0.278 \times 40 \times 7.52+2 \times 14 \\
& +0.278 \times 70 \times 7.52 \\
= & 22.24+83.62+28+146.34 \\
= & 280.2 \mathrm{~m} .
\end{aligned}
$$

(b) Minimum length of overtaking

$$
\begin{aligned}
\text { Zone } & =3 \times 0.5 \mathrm{D} \\
& =3 \times 280.2=840.6 \mathrm{~m}
\end{aligned}
$$

4
$\begin{aligned} \text { Desirable } & \text { length } \\ & =5 \times 05\end{aligned}$

$$
\begin{aligned}
& =5 \times 0.5 D \\
& =(40)
\end{aligned}
$$

(0)

Superelevation
$D t-27 / 8 / 19$

$\sin \theta=\frac{E}{B}$
$\sin \theta \simeq \tan \theta$
$\tan \theta=e=\frac{E}{B}$

$$
\Rightarrow E=e \cdot B
$$

\rightarrow The transverse slope (Ir to the direction) provided by raising the outer edge of pavement with respect to the inner edge on Horizontal to counter act centrifugal force, is called superelevation.
[Centrifugal force $p=\frac{m v^{2}}{R}=\frac{W v^{2}}{g R}$

$$
P=\frac{W \times V^{2}}{127 R}
$$

Where,

$$
\begin{aligned}
& V=\text { velocity of vehicle } \\
& \text { in } k m p h
\end{aligned}
$$

in kmph of 'the curve
$R=$ radius of the curve

When a vehicle is moving on the curve one orcferand force is exerted on: the vehicle, that force: is known as centrifugal force.
\rightarrow It is represented by e.
$e=\tan \theta$.

$$
e=\tan \theta
$$

Analysis of superelevation -

$$
\begin{aligned}
& P=\text { centrifugal prince } \\
& W=\text { weight if vet } W \\
& g=\text { acceleration due to } \\
& \text { gravity }=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& V=\text { velocity of } \mathrm{m} / \mathrm{s} \text {. }
\end{aligned}
$$

Considering equilibrium of forces 11 to plane.

$$
\begin{align*}
P \cos \theta & =W \sin \theta+F_{A}+F_{B} \\
F_{A} & =f \times R_{A} \\
F_{B} & =f \times R_{B} \\
P \cos \theta & =W \sin \theta+f\left(R_{A}+R_{B}\right)
\end{align*}
$$

considering equilibrium of forces Ire

$$
R_{A}+R_{B}=W \cos \theta+P \sin \theta
$$ to the plane putting the value of $R_{A}+R_{B}$ in eq (1)

$$
\begin{aligned}
& p u t+i n g \text { the value } \\
& p \cos \theta=w \sin \theta+f(w \cos \theta+p \sin \theta) \\
& p \cos \theta-f p \sin \theta=w \sin \theta+f w \cos \theta
\end{aligned}
$$

dividing $W \cos \theta$,

$$
\begin{aligned}
& \frac{p}{w}-\frac{f}{w} \tan \theta=\tan \theta+f \\
& \frac{p}{W}=\tan \theta+f+\frac{f}{}=\tan \theta+f\left(1+\frac{p}{w} \tan \theta\right) \\
& \frac{p}{W}=\tan \theta+f+\frac{f}{w} \tan \theta \\
& \frac{p}{W}=f \frac{p}{W} \tan \theta=\tan \theta+f \\
& \frac{p}{W}(1-f \tan \theta)=f t \tan \theta \\
& \Rightarrow \frac{p}{W}=\frac{\tan \theta+f}{1-f \tan \theta}
\end{aligned}
$$

$$
\begin{aligned}
& f=1.5 \\
& \tan \theta \text { max }^{m} \text { value }=7 \% \\
&=\frac{7}{100} \\
&=0.07
\end{aligned}
$$

$$
\begin{aligned}
& 1-f \tan \theta \\
= & 1-(1.5 \times 0.07) \\
= & 0.99
\end{aligned}
$$

$[0.99 \simeq 1]$ it canbe neglected.
So, $\frac{P}{W}=e+f \quad(\tan \theta=e)$

$$
\begin{aligned}
& P=\frac{W v^{2}}{g R} \\
& \frac{P}{W}=\frac{v^{2}}{g R} \\
& e+f=\frac{v^{2}}{g R}=\frac{v^{2}}{127 R}
\end{aligned}
$$

Step -3
Again check, if, $f<0.15 \rightarrow$ ok.
$f>0.15$, take
, $f_{\text {max }}=0.15$ \& $e_{\max }=0.07$, find v_{r}.
restricted designspeed from
$V_{\pi}=$ restricted design speed. $e_{\text {max }}=\frac{\left(V_{r}\right)^{2}}{2^{R}}$

Equilibrium Super Elevation -

$$
\begin{aligned}
& f=0 \\
& e+f=\frac{v^{2}}{g R}=\frac{v^{2}}{127 R} \\
& (e)_{\text {eqm }}=\frac{v^{2}}{g R}=\frac{V^{2}}{127 R}
\end{aligned}
$$

If $f=0$ super elevation is called equilibrivin super elevation and can be found by (e) eqm $=\frac{v^{2}}{g R}$.
Design of super elevation -
Step 1 :- Calculate e from:

$$
\begin{aligned}
e+\#^{0}=\frac{V^{2}}{g R} & =\frac{V^{2}}{127 R} \\
& =\frac{(0.75 V)^{2}}{127 R} \\
e & =\frac{V^{2}}{225 R}
\end{aligned}
$$

Step 2:
Then check, if $e<7 \%$
$(0.07)$$\rightarrow$ then ok.
if $e>7 \%$, then take

$$
\therefore e_{\text {max }}=0.07 \& \text { find } f
$$

from $e_{\text {max }}+f=\frac{V^{2}}{g \beta}=\frac{V^{2}}{127 R}$
MRP,CivibSDTE (O) Scanned by CamScanner
Q) The readices of a horcizontal circcula curve is $50 \mathrm{kmph}^{2}$ the latercal coefficient of frection is 0.15 m .
(i) Calculate super elevation requined if full latereal friction is assemed y_{0} developed (f-0.15)
(2). Calculate conefficient of friction is no super elevation is provided.
(3) Calculate equilibrium super elevation.

Given

$$
\begin{aligned}
& R=100 \mathrm{~m} \\
& V=50 \mathrm{kmph} \\
& f=0.15 \mathrm{~m}
\end{aligned}
$$

(1)

$$
\begin{aligned}
e+f & =\frac{V^{2}}{127 R} \\
e+0.15 & =\frac{(50)^{2}}{127 \times 100} \\
e+0.15 & =0.196 \\
e & =0.196-0.15 \\
& =0.047
\end{aligned}
$$

(2)

$$
\begin{aligned}
e+f & =\frac{V^{2}}{127 R} \\
f & =\frac{150)^{2}}{127 \times 100}-e \\
& =0.197
\end{aligned}
$$

(3)

$$
\begin{aligned}
& e=0.197 \\
&=\frac{(50)^{2}}{127 \times 100} \\
&=0.197
\end{aligned}
$$

2) Design the rate of super elevation for a horizontal highway curve If radius, 500 m \& design speed is lookmph.
Step -1:
Calculate e from.

$$
\begin{aligned}
e & =\frac{V^{2}}{225 R} \\
& =\frac{(100)^{2}}{225 \times 500} \\
& =0.089
\end{aligned}
$$

Step-2-
then check $e<7 \%$

$$
\begin{array}{rl}
e=0.07 \\
e_{\text {max }}+f & =\frac{V^{2}}{127 R} \\
0.07+f & =0.57 .157 \\
f & =0.07 \\
& =0.087 \\
f & =0.087 \\
f<0.15 & 0 \mathrm{~K}
\end{array}
$$

Q. The design speed of a highway is 80 kmph their is horizontal curve of readius 500 m on a cerctained locality. Calculate The super elevation needed to maintain its speed. If the max ${ }^{m}$ super elevation of 0.07 is not to be exceeded, calculate max allowable on this curve.

$$
\begin{aligned}
& V=80 \mathrm{kmph} \quad R=200 \mathrm{~m} \quad f=0.07 \\
& e+f=\frac{V^{2}}{225 R}=\frac{(80)^{2}}{225 \times 200} \\
& =0.14 \\
& e>0.07 \\
& e_{\max }=0.07 \\
& e_{\text {max }}+f=\frac{V^{2}}{127 R} \\
& 0.07+f=\frac{.80^{2}}{127 \times 200}=0.25 \\
& f=0.25-0.07=0.18 \\
& f>0.15 \\
& f_{\text {max }}=0.15 \quad \& e_{\text {max }}=0.07 \\
& e_{\text {max }}+f_{\text {max }}=\frac{V_{\pi}^{2}}{127 R} \\
& 0.07+0.15=\frac{V \pi^{2}}{127 \times 200} \\
& 0.22=\frac{V_{n}{ }^{2}}{25400} \\
& V r^{2}=5588 \\
& V_{\pi}=\sqrt{5588} \\
& =74.75 \mathrm{kmph}
\end{aligned}
$$

Extra Widening

(due to relgidity
of wheel based) of wheel based)
off tracking $=\frac{l^{2}}{2 R}$ fore single lane
$=\frac{n l^{2}}{2 R}$ for multilane roads:
where $n=$ no. of lanes.

$$
\text { Pschyoological widening }=\frac{V}{9.5 \sqrt{R}}
$$

(to permit overtaking of
crossing on culreses)
crossing on cultures)
Finally Extra widening -
(We) $=$ off tracking +

$$
\quad \begin{aligned}
& W e=\frac{n l^{2}}{2 R}+\frac{V}{9.5 \sqrt{R}} \\
& \searrow_{V, V, V I m p} \text { pschycological } \\
& \text { MRP,Civil. }
\end{aligned}
$$

Where, $l=$ length of the wheel base
Take $t=6.1 \mathrm{~m}$. if not given.
$n=$ no. of lanes in the road.
$R=$ Radius if the horizontal curves.
$V=$ speed of the vehicle in Koph.
Q) Calculate the extra widening required for a pavement of width fm, on a horizontal curve of radius 250 m . if the longest wheel base of vehicle is 7.0 m .
Design speed is 70 kmph .

$$
\begin{aligned}
& n=1 \\
& b=7 \\
& \begin{array}{l}
l=7.0 \mathrm{~m} . \\
R=250 \mathrm{~m} . \\
V=70 \mathrm{mph}
\end{array} \\
& \begin{array}{l}
l=7.0 \mathrm{~m} . \\
R=250 \mathrm{~m} \\
V=70 \mathrm{kmph}
\end{array} \\
& \begin{array}{l}
l=7.0 \mathrm{~m} . \\
R=250 \mathrm{~m} . \\
V=70 \mathrm{kmph} .
\end{array} \\
& 1 \text { Lane } b=3.5 \mathrm{~m} \\
& W e=\frac{n 1^{2}}{2 R}+\frac{V}{9.5 \sqrt{R}} \\
& =\frac{(7)^{2}}{2 \times 250}+\frac{70}{9.5 \sqrt{250}} \\
& =0.196+0.466 \\
& =0.66 \mathrm{P} \mathrm{~m}
\end{aligned}
$$

Q) Find the total width of a pavement on a horizontal curve for a new national highway to be aligned along a rolling terceain with a ruling sin radius... Assume all the data.

$$
\begin{aligned}
& V=80 \mathrm{kmph} . \\
& \begin{array}{l}
e+f=\frac{V^{2}}{1278_{6}} \quad \begin{array}{l}
e \\
\\
=0.07 \\
f
\end{array}=0.15 \\
n=2
\end{array} \\
& R=\frac{V^{2}}{27 \frac{8}{6}(e+f)} \\
& l=6.1 \mathrm{~m} \text {. } \\
& \omega=2 \times 3.5=7 \mathrm{~m} \\
& =\frac{(80)^{2}}{127(0.07+0.15)} \\
& =229.1 \\
& W e=\frac{n l^{2}}{2 R}+\frac{V}{9.5 \sqrt{R}} \\
& =\frac{2 \times(6.1)^{2}}{2 \times 229.1} * \frac{80}{9.5 \sqrt{229.1}} \\
& =0.162 * 0.556 \\
& =0.718
\end{aligned}
$$

finally total pavement of read

$$
\begin{aligned}
V= & 7+0.718 \\
& =7.718 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\left(V_{r}\right)^{2} & =(0.07+0.15)(127 R) \\
& =0.22(127 \times 250) \\
V_{\pi}^{2} & =6985 \\
V_{r} & =\sqrt{6985} \\
& =83.58 \mathrm{kmph}
\end{aligned}
$$

Tran (gradual change)

It is the curve which is used to join a straight path to a circular curve and whose-versas Ane where radius decreases from n to R a designed'value of radius and vice versa.

Objectives or functions of transition cure res -
\rightarrow To introduce gradually the centrifuge (force. Thus, avoiding sudden jere on the vehicle.
\rightarrow To enable the driver turen the Staring gradually.
\rightarrow To introduce gradually the super. elevation.
\rightarrow To improve aesthetic appeareance of the road.
Types of Transition Curves:-

Spiral
Curve
$\left(L \propto \frac{1}{R}\right)$
(Ideal transition curve)

MRP,Civil,SDTE(O) Scanned by CamScanner
(1) Based on rate of change of centrifugal acceleration (C)

$$
L=\frac{V^{3}}{C R}=\frac{0.0215 V^{3}}{C R}
$$

where, $C=\frac{80}{75+V}, 0.5<c<0.8$
(11) Based, on reata of introduction of super elevation
of introduction $N=$ reata of in per elevation

$$
\begin{aligned}
& \text { super elevation } N=\frac{\text { enate } N \cdot(W+W e)}{2} \begin{array}{c}
\text { sf super elevation about } \\
\text { centre line) }
\end{array} \\
& L=\frac{W e) \text { (rotation }}{}
\end{aligned}
$$

$=e N(W+W e)$ (rotation value of super elevation about inner
(iii) Emperical formula; as per $I R C$ edge)

$$
\begin{aligned}
L & =\frac{2.7 \cdot V^{2}}{R} \text { (plain \& Rolling terrain) } \\
& =\frac{V^{2}}{R} \text { (mountaneous) }
\end{aligned}
$$

Among the three values maximum one is taken.
Length of transition curve will be equal to maxm of (i), (ii), (iii)

$$
\begin{aligned}
\tan \alpha & =\frac{1}{N} \\
& =\frac{E}{L}
\end{aligned}
$$

$$
\frac{1}{N}=\frac{E}{L}
$$

$$
\Rightarrow L=E \times N \quad E=e \times B
$$

$$
=Q N(B)
$$

Q) Assignment.

$$
=e N\left(W+W_{e}\right)
$$

While aligning a highivay in a populated areal, it was neckssary to provide a horizontal circular curve of radius 325 m . Design the following.
(1) Super elevation
(2) Extra, widening
(3) Length of transition curve

Given data are

$$
\begin{aligned}
& V=65 \mathrm{kmph} \\
& \text { of wheel }
\end{aligned}
$$

Length of wheel base $=6 \mathrm{~m}$ pavement width $=3$ lane $-3.5 \times 3=10.5$.
(1)

$$
\begin{aligned}
e & =\frac{V^{2}}{225 R} \\
& =\frac{(65)^{2}}{225 \times 325} \\
& =0.058 \\
& e<0.07 \rightarrow o k .
\end{aligned}
$$

(2)

$$
\begin{aligned}
W e & =\frac{n l^{2}}{2 R}+\frac{V}{9.5 \sqrt{R}} \\
& =\frac{3 \times(6)^{2}}{2 \times 325}+\frac{65}{9.5 \sqrt{325}} \\
& =0.166+\frac{65}{9.5 \times 18.03} \\
& =0.166+0.379 \\
& =0.545
\end{aligned}
$$

(3) (1) Based on rate of change of centritugal force (c)

$$
\begin{aligned}
L & =\frac{0.0215 V^{3}}{C R} \quad C= \\
& =\frac{80}{75+V} \\
& =\frac{80}{75+65} \\
& =31.87 \times(65)^{3}
\end{aligned}
$$

(11) Based on reate of infreaduction of supen elevation.

$$
\begin{aligned}
L & =e N(W+W e) \\
& =0.058 \times 150 \quad(10.5+0.545) \\
& =96.09
\end{aligned}
$$

$t_{\text {MRP, }}$
(iii) Emperical formula as per IRC,

$$
\begin{aligned}
L & =\frac{2.7 V^{2}}{R} \\
& =\frac{2.7 \times(65)^{2}}{325} \\
& =35.1 \mathrm{~m}
\end{aligned}
$$

PIEV Theory -
(1) Perception
(2) Intellection
(3) Emotion
(4) Violation

1) Perception fine:-

It is the time required for the sensations received by the eyes on eaves of the driven to be transmitted to the brain through the nervoussystem spinal cored on it is the time required to perceive an object or situation.
2) Intellection time?

It is the time required for the driver to understand the situation it is also the time required for comparing the different thought t, ivil,SDTE(O) Scanned by CamScanner
3) Emotion time:-

It is the time elapsed during emotional sensational and other mental disturbance such as fear, anger or any other emotional feeling superstition etc.
Hi) Violation time-
It is the time taken by the driver fore the final action such as brake application.

$$
D t-1819119
$$

Q4. fy Calculate the total widening streaight width $W=7 \mathrm{~m}, h=7 \mathrm{~m}$ povement width $W=7 m$, Radius is rolling $\min ^{m}$ radius,

$$
\begin{aligned}
& \operatorname{lmax}+f_{\text {max }}=\frac{V^{2}}{12+R} \\
& 0.07+0.15=\frac{(60)^{2}}{127 R} \\
& 0.22 \times 127 R=3600 \\
& R=\frac{3600}{27.94}=128.84 \mathrm{~m} . \\
& W e=\frac{n l^{2}}{2 R}+\frac{V}{9.5 \sqrt{R}}=\frac{2 \times(7)^{2}}{2 \times 128.84}+\frac{60}{9.5 \sqrt{128}} \\
& =0.38+0.5 h_{\text {MRP,Civil,SDIE(O) }}
\end{aligned}
$$

Total widening $=7+0.94=7.94 \mathrm{~m}$
(2) Design super elevation fore a horizontal curve of radices 750 m and speed 100 kmph .

$$
\begin{aligned}
& e=\frac{V^{2}}{225 R} \\
& e=\frac{(100)^{2}}{225 \times 750} \\
&=0.059 \\
& 0.059 \mathbb{Z} 0.07 \rightarrow 0 \mathrm{~K} \\
& \therefore \text { design } E=5.9 \% \sim 6 \%
\end{aligned}
$$

$$
\begin{aligned}
& V=110 \mathrm{kmph} \\
& e=\frac{V^{2}}{225 R} \\
&=\frac{(110)^{2}}{225 \times 750} \\
&=0.0717 \simeq 0.072
\end{aligned}
$$

As $0.072>0.07$
and step

$$
e_{\text {max }}+f=\frac{V^{2}}{127 R} \quad e_{\max }=0.07
$$

$$
\begin{aligned}
0.07+f & =\frac{(110)^{2}}{127 \times 750} \\
f & =0.127-0.07 \\
& =0.057 \\
0.057 & <0.15
\end{aligned}
$$

\therefore design $\quad \therefore . E=7 \%$
3) Calculate the sate SSD for a design speed of 100 kmph . Take total reaction tine, $t=2.5 \mathrm{sec}$.

$$
\begin{aligned}
& f=0.35 \\
& S S D=0.278 V t+\frac{V^{2}}{254 f} \\
& =0.278 \times 100 \times 2.5+\frac{(100)^{2}}{254 \times 0.35} \\
& \\
& =181.98 \mathrm{~m} \simeq 182 \mathrm{~m} . \\
& \therefore S S D
\end{aligned}
$$

4) The speed of over e taking $\$$ over taken vehicles are $70 \& 40$ koph speed on a 2way traffic road if a of overtaking vehicle is $0.99 \mathrm{~m} / \mathrm{s}^{2}$. Calculate 1 Safe OSD
(2) Min m length of overtaking zone.
(2) Min m length of overtaking $⿻$ zone

$$
\begin{aligned}
& =3 \times O S D \\
& =3 \times 280.2 \\
& =840.6 \mathrm{~m} \simeq 840 \mathrm{~m} .
\end{aligned}
$$

$$
\therefore O \operatorname{OO}=280.2 \mathrm{~m}
$$

$\begin{aligned} \text { min lemgth of overtaking } & \text { xone } \\ & =840 \mathrm{~m} .\end{aligned}$

$$
=840 \mathrm{~m}
$$

$$
\begin{aligned}
& S=0.2 V_{b}+6 \\
& V_{p}=40 \mathrm{kmph} \\
& V=70 \mathrm{kmph} \\
& =0.2 \times 40+6 \\
& t=2 \Omega \text {. } \\
& =14 \mathrm{~m} \text {. } \\
& T=\sqrt{\frac{4 s}{a}}=\sqrt{\frac{4 \times 14}{0.99}}=7.52 \mathrm{~s} . \\
& \text { safe } \\
& \text { (1)OSD } \\
& =0.278 V_{b} t+0.278 V_{b}^{T}+2\left(0.2 V_{b}+6\right) \\
& \text { +6.278 VT } \\
& =0.278 \times 40 \times 2+0.278 \times 40 \times 7.52 \\
& +2 \times 14 \\
& +0.278 \times 70 \\
& =22.24+83.62+28+146.34^{x} \\
& =280.2 \mathrm{~m} \text {. }
\end{aligned}
$$

Ch-3
Highway Materials
Soil -
It forms the major portion of a road pavement structure because it provides support to the pavement.
\rightarrow The main function of subgrade is to provide sufficient strength. to the whole pavement structure. properties of soil-
\rightarrow stability
\rightarrow In compressibility
\rightarrow Permanency of strength
\rightarrow Good drainage
CBR Test:-
$C B R$ - Carliforenia Bearing Ratio To know the strength of (soil this test is used.
\rightarrow This is a penetration test used for evaluating the strength and stability of soil subgriadel.
\rightarrow The laboratory CBR apparatus consists of a mould of 150 mmdia . with a base plate and a colare, a loading frame with a cylindrical plunger of 50 mm did. and dial gauge fore measuring penetration value.
\rightarrow This test consists of penftracking a cylindrical plunger soil at $1.25 \mathrm{~mm} / \mathrm{min}$, The load values to cause 2.5 mm and 5.0 mm penetration are recorded.
$C B R(\%)=1$ Actual required to cause 2.5 mm ore, 5.0 mm penetration
standard load required to cause 2.5 mm or 5.0 mm penetration.

Standard Load for $2.5 \mathrm{~mm} \rightarrow 1370 \mathrm{~kg}$. $5.0 \mathrm{~mm} \rightarrow 2.055 \mathrm{~kg}$
For example
Let Actual load at $2.5 \mathrm{~min}=1000 \mathrm{~kg}$ then $(B R]_{2.5 \mathrm{~min}}(\%)=\frac{1000}{1370} \times 100=72.99 \%$
Actual load at $5 \mathrm{~mm}=2000 \mathrm{~kg}$.

$$
C B R]_{50 \mathrm{~mm}}^{(\%)}=\frac{2000}{2055} \times 100=97.32 \%
$$

Greaten value will be taken as $C B R$ value.
procedure -
(1) The specimen in the mould is subjected to 4daijs soaking. The surecharege. weight (extract.) is placed on the top of the specimen and the assembly is placed under the plunger of the loading frame.
(2) The load values are noted corresponding to penetration values of $0.0,0.5,1.0,1.5,2.0,2.5,3.0,4.0$, $5.0,7.5,10.0$ and 12.5 mm .
Then load-peretration curve is plotted.

\Rightarrow Normally $C B R$ value at 2.5 mm penetration is higher than at 5.0 mm . However if. The CBR value at 5.0 mm is higher than at $x .5 \mathrm{~mm}$ then the test is to be repeated.
Example -
The load penetration values of CBR tests conducted on two specimens of a soil sample are e given below. Determine the CBR value of soil.

If 100 div.s of load dial represents 190 kg load.

penetration of plunger (mm) Load dial readings, diva Specimen specimen		
0	0	0
0.5	8	0.5
1.0	15	1.5
1.5	23	2.5
2.0	29	6.0
2.5	34	13
3.0	37	20
4.0	43	30
5.0	48	38
7.5	57	50
10.0	63	58
12.5	67	63

$$
\begin{aligned}
& \begin{aligned}
100 \mathrm{div} & =190 \mathrm{~kg} \\
\text { div} & =190
\end{aligned} \\
& 1 \mathrm{div}=\frac{190}{100} \mathrm{~kg}=1.9 \mathrm{~kg} \\
& 34 \text { div }=1.9 \times 34=64.6 \\
& \text { M8 dir }=1.9 \times 48=91.2 \\
& C B R J_{2.5 \mathrm{~mm}}=\frac{64.6}{1370} \times 100=4.71 \% \\
& \text { BR }_{5 \mathrm{~mm}}=\frac{91.2}{2055} \times 100=4.44 \%
\end{aligned}
$$

Final $C B R$ value of specionen:

$$
=4.71 \%
$$

specimen-2

$$
\begin{aligned}
13 \text { div } & =1.9 \times 13=24.7 \\
38 \text { div } & =1.9 \times 38=722 \\
C B R]_{2.5 \mathrm{~mm}} & =\frac{24.7}{1370} \times 100=1.80 \\
C B R J_{5 \mathrm{~mm}} & =\frac{72.2}{255} \times 100=3.51 .
\end{aligned}
$$

Test is to be repeated.
(aggregates -
Aggregates form major portion pavement, structure. They have to bear stresses occuring due to the wheel loads on parementiA surface. coarse.
properties of road aggregates -
\rightarrow Strength (Resistance to crushing)
\rightarrow Hardness. (Resistance to abbrasion)
\rightarrow Toughness (Resistance to impact load) \rightarrow Du,cability (soundness test)
\rightarrow Shape of the aggregate -
(1) Rounded 0
(2) flakey
(3) Angular $\triangle 1$
(4) Elongated

Flakeyness index Test elongation index x Test
\rightarrow Adhesion with bitumen
Adhession test.

Tests fore Aggregates -
(1) Crushing strength Test. -

This test provides a relative measure of resistance to crushing under gradually applied compressinetey load.
The apparatus used fore this test are, a (1) steel cylinder of 15.2 cm dia with a base plate and a plunger.
(2) Compression testing machine
(3) Cylindrical nedsure of dia
(4) Tamping: rod (25 blows)
(5) sieve -2.36 mm .
procedure -
(1) Dry aggregate passing through 12.5 mm Is sieve and retaining on 10 mm IS sieve is filled in the Cylindrical measure in 3 lagers. And each layer being temped 25 times by the tamping rod.
(3) The test sample is weighed l gov. and placed in the test cylinder. The plunger is placed on the top and the load of 40 tonne is applied act a reate of 4 tonnes per mincete. The load is applied for 10 min .
(3) The crushed aggregate is sieved to 2.36 mm Is sieve. The aggregok, passing the sieve is weighed $\left(W_{2}\right)$
\therefore Therefore, Aggregate crushing grin. value $=\frac{W_{2}}{W_{1}} \times 100$

* This value should not exceed 45\% for base coarse.
* And for surface coarse \$ $\$ 30^{\circ}$.

Abrasion Test-
Attrition - rubbing bet" Agg.
Abrasion - rubbing bet Hg \& other foreign
LOS. Angeles - Abrasion Test-
The principle of this test is to determine the percentage wear (loss) due to relative rubbing action between Aggregar
and steel balls used as abbreasive charge.
(2) The LOS. Angeles machine consists of a hollow, cylinder closed at both ends haring inside bia. 70 cm and Length 50 cm and mounted "to reotate about its horizontal axis.
The abbreassive charege consists of castiriron spheres of dia 4.8 cm . and weight of $390-445 \mathrm{gm}$
(3) 5 to. 10 kg of aggregates. based on the gradation is placed in the machine with the abbreassive charge. The machine is rotated att a speed of 30-33 rpm crevolution pere min) for specified no. of revolutions (500 . 1000 based on the gradation)
(3) The abraded aggregates is then sieved on 1.7 mm Is sieve. and the weight of poudered aggregate passing 1.7 mm Is sieve is weighed. $\left(W_{2}\right) \mathrm{gm}$.

$$
\begin{aligned}
& \text { Loss Angeles } \\
& \substack{\text { Loses } \\
\text { aloes value }}
\end{aligned}=\frac{W_{2}}{W_{1}} \times 100
$$ abrasion value

* It, $>30 \%$ for good quality tyg.
(3) Impact Test -

This test is used to evaluate the toughness of aggregates ie resistance to repeated impact load.
The aggregate impact machine. consist of (i) a metal b are and (Ea cylindrical steel cupof. internal dial 10.2 cm . and height 5 cm in which the aggregate specimen is placed.
(3) A metal hammer of weight 13.514 kg with a free fall from a height of 38 cm .
procedure:-
(1) Aggregates passing threngh
12.5 mm sieve and retaining 12.5 mm sieve and oecestaining on 10 mm sieve is fill in a cylindiu measure in 3 layers by tamp each layer by 25 blows by $V a$
tamping red. tamping read.
(2) The sample is transferred from the measure to cup of aggregate impact testing machineand compacted by tamping times. The hammer is raised to a height of 38 cm and allowed to $f a l l$ freely on the specionen.
(3). After subjecting. The test (b yer) specimen to 15 bares blows the crushed aggregate. is shift on 2.36 mm Is sieve. and the corigttet aggregates passing through the 2.36 mm sieve is weighed andréconded. (H_{2}) gm

$$
\begin{aligned}
& \text { AI }=\frac{w_{2}}{W_{1}} \times 100 \\
& \text { Aggregate }
\end{aligned}
$$ Impact,

value
for Surface. coarcseAIV 730%.

(4) Soundness used to study the
\rightarrow This test is of a ggregates to resistance action, by conducting weathering action, wi weathering test accelerated. we a the ring cycle.

* (lean dry aggregate specimen of specified size is weigh e ${ }^{\circ}$ then it is immersed in saturated solution $\mathrm{N}_{1} \mathrm{a}_{2} \mathrm{SO}_{4}$, MgSO_{4} for 16 to
(2) Then the specimen is dried 18 hires. is an oven at $105-110^{\circ} \mathrm{C}$ thus making one cycle.
(3) In this way 7-10 cycles are completed on the same ruction aggregate.
(4) After completing the final cycle the sample is alried and average loss in weight oof aggregates is measured.
(5) The avg. loss in weight of aggregates for pavement construction after 10 cycles of wetting drying $\geqslant 12 \%$ for
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\neq 18 \%$ for MgSO_{4}. Dt-24)9119

Shape test-
There are 3 shape tests are performed. on aggregate.
(1) Flakeiness, index
(ii) Elongation index
(II) Angularity number.

Flakiness Index -
\rightarrow Flakiness Index as the percentage by weight of least
\therefore aggregate particles is less. than dimension (thickness) the mean dimension. $3 / 5$ or 0.6 times. the
\rightarrow This fest is applicable to aggregate sizes. greater than 6.3 mm .
\rightarrow The sample of aggregates to be tested is sieved threargh a set of sieves and separated into specified size ranges.
\rightarrow The material passing the slot from each size range let are added up and let the weight be " ω " then \$

$$
\begin{aligned}
& \text { added up } \\
& \text { be "w" then } \text { Ep }^{\text {Epassi }} \\
& \text { flakiness Index" }=\frac{w}{w} \times 100
\end{aligned}
$$

where w-total wt. of aggregate.
\rightarrow For use in road. construction

$$
F I<15 \%
$$

Elongation Index -
\rightarrow It is defined as the percentage by weight of paicticles by greatest dimension (length) is greater than $\frac{9}{5}$ or 1.8 times the mean dimension.
\rightarrow Elongation Index $=\frac{\sum \text { Retaining }}{W} 100$
\rightarrow This test is rect applicable for Sizes greater than 6.3 mm .
\rightarrow The sample of aggregate to be tested is sieved through a set of sievels and, separated in to different size range. then the aggregates from each size range is ind vividully passed through appropriate length
gauge to separate. elongated gauge to separate elongated
\rightarrow The aggregates whose length is greater than specified gauge is weighed and expressed as the percentage of total wright of aggregate particles. known as elongation index.
\rightarrow Limit -
Fore use in road construction E.I 7.15%.
(3) Angularity Number -

If represents the degree of angularity of the aggregate particles.
It is defined as the volume of voids in excess of 33%.

$v_{v}=33 \%$ for perfectly rounded aggregate.

$$
\begin{aligned}
& -44 \% \\
& A \cdot N=44-33=11
\end{aligned}
$$

Example-
usogm.s of aggregates was filled in a container ot volume $3 l$. The sp.gre of agg. is 2.65. Find the angularity number of the aggregate.

AR S:

$$
1 \mathrm{~m}^{3}=(100)^{3} \mathrm{~cm}^{3} 1 \mathrm{~m}^{3}=1000 \mathrm{l}
$$

$$
\begin{aligned}
S_{s} & =\frac{\mathrm{ms}}{\frac{0.45}{0}} \\
& =\frac{003}{V} \\
& =0.003 \mathrm{~m}^{3} \\
& =0.003 \times 10^{6} \\
& =3000 \mathrm{~cm}^{3}
\end{aligned}
$$

10^{6}.

$$
1 \mathrm{l}=\frac{1}{1000} \mathrm{~m}^{3}
$$

$$
3 l=0.001 \times 3
$$

$$
=0.00 \mathrm{gm}^{3}
$$

$$
1 \mathrm{~m}=100 \mathrm{~cm}
$$

$$
1 \mathrm{~m}^{3}=100 \mathrm{~cm}^{3}
$$

$$
0,003 m^{3}=0,0033|x|
$$

$$
=0.3 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Angularity no } & =U_{v}(\%)-33 \% \\
& =94.3-33 \\
& =61 \%
\end{aligned}
$$

$$
\begin{aligned}
& M_{s}=450 \mathrm{gm} . \\
& \begin{array}{l}
\left.\rho_{s}=\frac{M_{s}}{V_{s}}=\frac{450}{V_{s}} \right\rvert\, G_{s}=\frac{\rho_{s}}{\left(\rho_{\omega}\right)+1} \\
\left.\Rightarrow 2.65=\frac{450}{V_{s}} \quad \begin{aligned}
\rho_{s} & =1 \times 2.65 \\
\Rightarrow V_{s}=450 & =2.65
\end{aligned} \right\rvert\,
\end{array} \\
& 1 \text { lit }=1000 \mathrm{~m} \\
& 1 \mathrm{~m}^{3}=1000 \mathrm{l} . \\
& 1 R=\frac{1}{1000} n^{3} \\
& 1 \mathrm{~cm}^{3}=1 \mathrm{ml} \text {. } \\
& 3 l=\frac{3}{1000} \mathrm{~m}^{3} \\
& =169.81 \mathrm{~cm}^{3} \\
& V_{V}=V-V_{s}=3000-169.81=28.30 .190 \mathrm{ch}^{1} \\
& V_{v} \%=\frac{2830.19}{3000} \times 100=94.3 \%
\end{aligned}
$$

procedure -
\rightarrow The apparatus required fore angularity number test, consists of a metal cyllinden of capacity $3($, a tamping
reald. read;
\rightarrow The test ample is sieved and filled in 3 layers in the cyllinder by X 102 . tamping each layer 100 times. Specific gravity of aggregate is considered to. measure the quality or strength. of a mater of: dry aggregate's sample $\left(W_{1}\right)$ and immersed in in a weir basket 24 hues. in water water fore 24 hres.ighed in weighed (wa) then
The sample is
\rightarrow The sample the weight is record out and the aggregates are taken dry by made satiercated a cloth: $\left(W_{3}\right)$. wiping legates are again placed
\rightarrow The aggregal for 24 hrs at an in an oven $100=110^{\circ} \mathrm{C}$ and the dry term - $100-110$ is determined. (Wy) weight is a gravity is calculated
\rightarrow The specific gravity dry weight of aggregate by dividing wing of equal volume of water

$$
\begin{array}{ll}
\text { to water weir absorption } \\
G=\frac{W_{3}}{W_{3}\left(W_{1}-W_{2}\right)}, & =\frac{W_{3}-W_{4}}{W_{4}} \times 100
\end{array}
$$

$\mathrm{Ch}-4$
ighway Pavements
Pavement is defined as the whole
Pavement structure consisting, starting from sub-base, baseksurthace vehicle nodrement bottom useful for that load is
\rightarrow It is assumed that surface to bolton transferred from sur m of a coperuncat, layers in the imperion quality coneshape: are used: in the lower materials as the stress get's decreased.

\rightarrow Based on the structural behaviour pavements are divided into two types
They are
(a) Flexible pavements
(b) Rigid pavements.
(a) Flexible pavements
bitumen $\frac{\text { Rigid pavements }}{\text { c.c.slab }}$
(1)

(2) A typical flexible parkment cestructure consists of following layers.
(1) subgreade e oil
(2) Sub bask
(3) base
(4) sure facing.
(3) It consists of series of layers. with highest quality materials, at or near the top.
(4) It reflects the deformation of subgreade and subsequent layers. on the surface.
(5) Load transfer takes place through The point of contact. , of aggregate particles. ie grain to grain transfer.
\rightarrow life fran is less $\simeq 15$ yr
\rightarrow Joints not required
(2) Atypical rigid parament structure consists. of following lagers...
(1) sub grade soil
(b) Base
(C) Cement concrete slab.
(3) It consists of one coarse potctland cement slab of relatively. high -bending resistance.
(4.) It is able to bridge over localised ore minor failures.
(5) It distributes load over a wide, area of subgrade because of the rigidity and high modules of elasticity of the slab.
\rightarrow life spam is more $\simeq 30$ yrs.
\rightarrow Joints are provided. MRP,Civil,Spedte Scanned by CamScanner
(6) Pavement design is. (6) of concrete ilexural is ing ea influenced by strength. important factor a subgrade strength. An this design
IRC -37.2001 IR $-58,2002$.
(7) IRC -37 20001$]$

Functions of components of pavement -
\rightarrow It is the lowest layer of national
(1) Sub grade soil preepaired to receive the other it layers of pavement.
\rightarrow The load on the surefacing colure. is finally transmitted to the sub-grod, layer. which means that pressure on the top of subgreade should be within allowable limit to avoid failure.
\rightarrow Therefore', at least top 50 cm of subprod \rightarrow soil is well compacted under controlled conditions of maximum dry density \&
$\rightarrow C B R$ test is performed to evaluate the strength of silbgrade soil.
(2) subbase \& base -.
\rightarrow These layers are made up of broken stones, bound or unbound aggregate. Sometimes stabilized soil arc used
\rightarrow Subbase and base course mainly acts as a load transferring medium from surface to subgrade.
\rightarrow In rigid panement-base course has the following functions
(a) Preventing mud pumping.
(b) Prestecting subgreade against eruct
(3) Surfacing ore wearing course-

Road's wean 2 tear is due to rubbing. As so, it is also ${ }^{\circ}$ called wearing course.
\rightarrow It is the top most layer of a pavement structure.
\rightarrow It has following functions -
(a) To give a smooth riding surface.
(b) To resist pressure exentied by wear a tigress and to take wear \& than due to traffic.
(c) Tue provide a water tight Layer
\rightarrow Normally, bitumenous surfacing is used as wearing course in flexible pavement and cement concrete slab in rigid pavement.
Assignment -
(1) What do you mean by stabilisation? Explain briefly about different methods of soil stabilisation.
(1) Lime stabilisation
(3) Cement stabilisation
(3) fly ash stabilisation

Che
Road. Maintenance
\rightarrow Broadly highway maintenance is divided into 3 types -
They are -
(1) Routhin maintenanflling ore rep of pot holes)
(2) Periodic maintenance
(3) special repair
(1) (1) shoulder maintenance
(2) patch repairs
(3) filling up of pot holes
\rightarrow (2) (1) Renewals of surfacing coat lay en
$\rightarrow(3) \otimes$ Reconstruction of pavement, repair of damages due to flood.
(2) Providing additional safety measure.

Pavement failures -
(a) failures in flexible pavements-
\rightarrow (1) Alligator cracking (map cracking)
-(2) Consolidation of pavement layers.
(3) Shear failure
(4) longitudinal cracking
(5) Frost heaving.
(6) Lack of binding to lower course
(7) Reflection cracking
(8) Formation of waves \& corrugations
(1) Alligator e cracking
\rightarrow Due to relative movement of pavement layer materials.
\rightarrow Repeated application of heavy raciloads:
\rightarrow Localised weakness in the under base course.
(2) Consolidation 'of pavement Layers or
\rightarrow Due to consolidation of ruts are more pavement layers ruts coats formed on the surfacing coats/lages

(3) Shear
failure -
\rightarrow Shear failures occur due to
\rightarrow Due to inadequate stability or excessively heavy loading.
(4) Longitudinal cracking volume change in subgreade on sill and sliding of side satthement of longitudinal
slopes. slopes.

(5) Frost heaving -

A localized heaving up of pavement portion due to conversion of soil moisture into ice.
 due to frost.
(b) Lack of binding, with lower layer pot, holes or patches are forened on the surfacing course due to lack of proper bond between bitumen and aggregates.

(7) Reflection cracking:

Formation of the reflection cracks on the surface creats a path for water - seepage which leads to mud pumping.

Maintenance of flexible, pavement-
Mainly there are 5 types of maintenance work in bitumenous road.
(a) Patch repairs
(b) Surface treatment
(c) Resurfacing
(a) patch repairs -
\rightarrow This include filling up of localized depressions or potholes.
(i) First pot holes are cut to rectangular shape and affected materials ore totally removed. Then the patches are cleaned and painted with bitumenous binder and emulsion is applied inthe pothole, so as not
\therefore cause travelling (iremoval of agg. from
(b) Surface treatment the surface)

Excess bitumen in the surface leads to bleeding and pavements become slipperyor patchy.
Surface coarse gelsogets damaged due to continuous treldfic or heavy rainfall."
such type of pavement surface are applied with a renewal coat called. (seal coat or surface dressing mixture)
To de volos necessity
(c) Resurfacingcompletely damaged and developer additional siding surface, it neodsan additional sfreface coarse on the existing surface ore resurfacing Scanned by CamScanner

Traffic signs \& signals
Traffic control devices-
Various majors and devices weed to contreal, regulate and guide traffic are called traffic condical davies.
Trearfic control devices are divided into following two categories They are -
(1) signs
(2) Signals
(3) Markings
(4) Islands.

Traffic signs -
Based on the purpose of signs,triaffic signs are divided into three types-
(a) Regulatory ore mandatory signs
(b) Wakening signs
(C) Informatory signs.
[Placement of sight be placed at a distance not less than 0.6 m away from the edge of the Kerb on roads with kerbs and 2-5m away from edge of the carriage on roads withodet. kerbs?
Signpost should be coloured blackrwhite alternate each of 25 cm thickness.
(Requlatorey signs-
These signs are made the intro the road users, about rules, lawes. regulations e pohibitions.
The deigns which come under regulatory signs ane \qquad
(1) Stop \& Giveway signs.
(2) Prohibitory (sign
(3) No parking \& No stopping sign
(4) Speed limit
(5) Restriction end sign
(6) Compulsory direction contricol sign
(1)

white Letters
select
Shape is octagonal
Giveway sign-
If there is a minareread from a major reade. then stop and look feeze any vehicle is coning on not, Af no vehicle is coming then you can probed.
Triangular with
apex point apex pointing downward.
(2) Prohibitory signs -
(i)
overtaking prohibited
streargritpohibited circular in ape,
These are bed brede
 These arekround with red boreden.

one way signs

Speed limit. -

Restriction end slack letter ot -17/10/19

Compulsory direction contresl
blue background,
white
Rene Reuse
Sompulsoryleft

Compulsory left ore go ahead.

Compulsory kerbed left
(2) Warning signs -
shape- equilateral triangle with apex pointingupwared.

Examples

Reverse bend left Narresw bridge ahead ahead

(3) Informatory signs-

Informatory sign used to guide road users along routes or recodes along with distances.
Shape -Rectangular.
Vllow/white backgrenend
black borden
black letter and arereous.
(1) road junction approach

(2) Route marker.
(3) Hospital
(4) Petrolpump

$$
\begin{aligned}
& \mathrm{NH} \\
& 326 \\
& \hline
\end{aligned}
$$

(3) Traffic signals-

These are control devices used to direct the traffic to stop \& proceed at intersectionsbsing Red, amber s on yellow, greenlight signals automatically.

Terms related to traffic signal-
(a) cycle -

The time required for 1 complete sequence of , Red-amber-green
(b) phase -

Part of signal cycle allocated to traffic movement or combination of traffic movement is called phase.
(c) Interval-

The type time during which signal indication don't change.
Types of traffic signalsTraffic signals are broadly.
They are (a) Traffic control signal
(b) Tredefrec cosatiered
(c) Special triaiftic. Signals.

Traffic control signal-
\Rightarrow (1) Fixed time signal
\rightarrow (2) traffic actuated or automatic signal
\rightarrow (3) Manually operated (with traffic police)
(a) Fixed time signal -

In. this type of signals the timing of each phase of cycle is predetermined. based on past traffic studies. traffic signals which are electrically opereated.
\rightarrow The main disadvantages of this type of traffic signals is that they operate with fixed timings yet sometimes the traffic flow ron one road may be almost nil. and the traffic on cross road may be quite heairy.
(b) Treattic actuated-

In this type of traffic signals the timings of phase and cyck ane changed accoreding to treatfic demand.
\Rightarrow These are very costly as compared to fixed time signals.
\rightarrow Detectors are installed to asign the right of way for various traffic movement on the basis of traffic demand.
(c) Manually operated signals With the help of treat tic police.
avg: walking speed- $1.2 \mathrm{~m} / \mathrm{s}$
(2) Pedestrian traffic signals-

These are meant to give right of way to pedestrians to cross a road during walk period.
Types of traffic signal system-
Based on the type of cooredination between successive intersections traffic signal system is divided into four types.
They are -
(1) Simultaneous system
(2) Alternate system
(3) Simple progressive system
(4) Flexible progressive system (good)
(1) Simulteneais system

All signals along a given roadway shows same indication at same time.
(2) Alternate system-

Alternate signals show opposite. indication at same time.
(3) Simple, progressive system -

Continuous : operation of group of vehicles alonga road at a resonable sped. Greer signal.at all intersection at a prebletermince time schedule.
(4) Flexible pregressive system - possible to to varey the leycle length, time schedick at each intersection with the helpoff a compectere. It is the most esticient tratific signal system.
(3) Marckings -

Lines, patterens, wareds,'symbol or reflectores on pavement, kereb etc arce called road markings.
Road markings, aree usually a vai able in 3 colours, they are, whitel, yellow, black. Breoadly reoad marckings are divided into 4, fy pes they arce 1
(1) Parement marking
(2) Kerb marcking
(3) Object mareking
(4) Retlector unit marking
(1) Pavement marking- $10-15 \mathrm{~cm}$
(i)Centre line markidg (single broken Lines)
(II) Lane marking (broken lines)
(II) Border edge line (single continuous line) (19)
(1) \qquad

single broken line (vehicles are allowed to overtake)
(2)
 -
(3)

$$
\xrightarrow{\sim-C_{L}}
$$

Lane lines

$$
----\cdots
$$

overtaking strictly prohibited (normally
(b)
 white or yellow t visibility
on this side macle on this side
mut overtake
 mustrit overtake

Vehicle on this side can overtake if itissafe.
6)

Border edge line

(2) kerb marking-

These are the markings on a kerb. with alternate black y white. lines to increase, the visibility from a long distance.
(3) Object marking .

These are the markings provided to identify any physical obstructions on or near the roadway.
A Reflector unit marking
Usually. Yellow coloured reflectros are used on the roads for. sate driving during night.
Hazardous marker
Height- 0.8 to 1 m .
colour- white \& black.

Failures

$$
\begin{aligned}
& \text { wires } \\
& \alpha \uparrow-\operatorname{temp} \uparrow-\text { expand. } \uparrow ~ \\
& \alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$\begin{array}{ll}\text { concrete } \alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C} & \text { Day-expansion } \\ & \text { right-contraction }\end{array}$
Following are the different types of failures in Rigid pavements.
(1) Scaling of cement concrete
(2) Shroinkege cracks
(3) Spalling of joints
(4) warping cracks
(5) Mud pumping
(1) Scaling of cement concrete -
\rightarrow scaling means peeling off on flaking off of top layer, of concrete surface.
\rightarrow The reason behind scaling of cement concrete are:-
(a) Improper mix design
(b) Presence of chemical impurities in the mix.
(2) Shrinkage cracks Reduction in volume
\rightarrow The reason behind shrinkage cracks is improper curing.
\rightarrow These cracks develop in transverse as well as in longitudinal direction
(3) $\frac{\text { spalliag of foints - }}{1}$
(atranking if joints)

- Yatling laf joints in rigid parement io impropor piacement
at fallyy allignment of sealing materials artallen materials (bitumen on rewbbenbitumen)
\rightarrow Lecorking off of joints leade to Anviopment of exess stresses in Canceretc at or near. the joints anke to wheet load.
(A) Warping cracks -

warping down

\rightarrow These are the cracks usually at Hhe edges in a irregular patieren.
\rightarrow Preppere dozign or joirts can avoid. these typp ff errackin rigid parement.
(5) Mued purping

It is a fhedrempnan in which soil sherryy Acomes $O L$ th fircozcoh the joints and trtacks in epment conarete parement dureing dish dacinuand movernent \&f gedbs aunden heary wher loade:

\because soil subgriade

$$
\text { soil }+\mathrm{H}_{2} \mathrm{O}=\text { mud }
$$

Factors, which cause mud pumping are \rightarrow Extend of slab deflection
\rightarrow Type of subgreade soil
\rightarrow Amount of free water
$D t-24110119$
Highway Drainage
Highway drainage is defined as the process of removing and controlling excess, surface \& subsoil waterfrem the carceige way.
Importance of Drainage -
\rightarrow Excess moisture in soil subprade reduces the strength a stability of subgrade.
\rightarrow If their exists clayey soil subgrad. then variation in moisture content causes considerable Variation in subgreade volume, which leads to pavement failure.
\rightarrow Poor drainage is also treated as the reason behind formation. of webs \& corrugations in flexible pavements.
\rightarrow Continuous contact of water with bitumenous pavements causes stripping of bitumen from aggregates.
\rightarrow Presence of water in subegreade. soil in rigid pavements leads to mud pumping.
\rightarrow Presence of water in subgrade also causes problems of frost action in cold countries.
\rightarrow Surface, water also causes erosion. of soil from top \& slope of embankment.
Surface dreainage-(colléction t disposal)
surface drainage deals with collection of surface water info longitudinal drains i.e. side drains and then to dispose off the collected roater, in the nearest watermcourese.

Methods of sureface drainage :-
\rightarrow The water from the pavement surface is removed by providing camber ore cross slope to the pavement The amount of cross slope depends on the type of pavement surface and the amount of rainfall:
\rightarrow In rural road, the side drains which are generally opened kutch sous drains of trifpezoidal shapes with suitable longitudinal slope provided parallel to the road alignment.
\rightarrow The drainage trenches properly filled with the layers of coalrese sand \& greavel.
x
Trad pavement
Layers of gravel
with size increasing
downiande.
Drainage in rumal reads
\rightarrow In urban roads due to limitation of land width and presence of footpath, Islands and other read facilities, It is necessary to provide under. -ground longitudirnat drains between. the kerb and the pavement,

Dreainage inveban roads
Sub-surface Drainage -
\rightarrow Fluctuation ar en ground water percolation of rainwater e, mordent \rightarrow rise of capillary water causes change in moisture content of the surface which should be properly taken care of by a process/'calleo. sub surctice drainage.
\rightarrow
Following are the different. methods of subsurface drainage.
(1) Lowering of water table
(2) Control sf seepage flow.
(3) Control sf capillary fist
(1) Lowering of water table -
\rightarrow It is suggested that water treble
. Should be kept 1 to 1.2 m beloowth. subgrade.
\rightarrow In places where water table is high, it is alesirable to construct the read aet embankment of height not less than 1.0 to 1.2 m .
\rightarrow It is also possible to lower the water table by constructing or providing a serifs of transverse drains.
(2) Contred

When th is slog be co long: tree Clair
drain pipe
permeable soils.

lowering of high W.T in less
lowering of n permeable soil.
(2) Control of seepage-

When the general ground level is sloping the seepage flow can be controlled by providing. k longitudinal ' (dreain piper. in trench filled with sand. and
\qquad clay splat, af top.
$\operatorname{lin} \theta$

real Thowence seepage line
(3) Contrel of Capillary Rise-

Capillary rise of Water table ch-10
can be avoided by prioriding an impervious layen the pavement. Cy layer within the pavement. ()

Greanulare Capillary cut-off

Lands with Cappe of r ore

Follor consi, arek
(1) Unifo verct
(2) w_{i} res
(3) FLo anc
(4) Sui shis
(5) T sho

shoulder
$c h-10$
Landscaping And
le
Landscapingand Areboriculture deals with development of Aesthetic (appearance) and other abutting ties of road and the aby ting hand ore right of way.
Following are. the points to be considered for landscaping and areborciculterere of highways.
(1) Uniform and smooth horizontal \& vertical alignment.
(2) Wide. ROW and shoulders in reveal highways.
(3) Flat side slopes in embankment and cut.
(4) Suitable plantation of trees and shrubs and their proper maintenance.
(5) Turfing on side slopes and on shoulds (on reseal road;
ne mes.
shoulder
Shrubs on the reduce the headlight glare during night driving.

Highway Construction-
The purpose of highway
construction is to provide a stat: and even sureface for the av carcraige way which can withetor. the stress caused due to no. of load applications.
\rightarrow Based on the method of construction highway construction is divided into marley 3 types -
(a) Water bound Macadam (WBM) No
(b) Bitumenous read or Black topreos.
(c) Cement concrete road.

Steps of Highway construction The highway construction project is breoadly dilvided into two parts.
(a) Preparation of subgrade
(b) Pavement structure.
(a) Preparation of subgrad. -
(1) Preparation of sulgreadk includes site clearance, grading
Compaction. compaction.
(ii) The construction rite should be Cleared off and the top soil

2
consisting of grass, rubbish and. other offganic matter should be removed.
able (Ni) After site clearance, Grading operation is started to bring stand the subgreade to the designed gradient and camben. Belldozens, scrapers and blade graders are used, for grading operation.
action (v) Compaction of soil seibgrade is d carried out after the grading operation to remove the ain voids thus, increasing the density,
) road. Strength, stability and thereduction of ord. sat tement." Rollers, smooth whee rollin, sheepfort roller, pneumatic tyredrollen. etC., rammers, vibreatorsare used as compaction equipments.
pavement structure -
(a) Construction steps of WBM-
(1) WBM means crushed or broken aggregate mechanically interlocked by rolling cen and the voids
les d water.
be 1
(11) The thickness of WBM varies from 10 cm to 7.5 cm generally.
(ii) It may be used as a subbase, base or sureface coarse.

Steps -
(ii) Preparation of foundation ton receiving WBM layer.
The foundation. Layer is prepared to require grade and camber and dust, loose materials shocild be cleaned. Depressions, and potholes; it any, should be filled.
(2) Provision of lateral confinment for WBM laying may be done by constructing. Shoulders in advance and then trimming the inner sides vertically equal to the thickness of WBM layer.
这 Spreading of coarse Aggnega
Coarese aggregates ane spread unformed to a proper thickness of 7.5 cm to 10 cm inp,Civil,SDTE(Q) Scanned by CamScanner
（19⿺辶 4 After spreading of coarse
aggregates 3 －wheeling is started with a 3－wheeled roller of capacity 6－10tonne storting from edges，and greadually shifting towards the centre．
（孪）Application of screening－ Smaller aggregates are applied to fill the voids or gaps and again revere rolling is conducted．
（b）Sprinkling \＆igrouting of water－ After the filling up of voids． water is sprinkled on the surface swept and rolled．
（7）Application of binding material－
－and rolling bindingem ana uniform rate along e applied at a sprinkling of cortex with continuous sprinkling and rolling is done simultaneously．
（8） $\frac{\text { setting and } \frac{\text { arcing }}{\text { Aten }} \text { compaction WBMcoanse }}{\text { find }}$
fest A is allow to set over－night，ontic next day if there is any depression Trend then they should
 Scanned by CamScanner

After proper drying the
layer is opened to traffic.

Based on the method of construction bitumenous constructions are divided into following types -
(1) Prime coat
(II) Tack coat
(iii) seal coat
(iv) whole BSDCBitumenous surface
(v) Berexeenè pre-mix carpet. (vi) Bituminous concrete
(i) Prime coat -

It is the first application of low viscosity liquid bitimenous material over a WBM base course.
The main objet ot of prime coat is to fill the voids of WBM surface and also to brent bind the mineral particles on the existing bouse course.
\rightarrow Usually MC or SC Conedium (Slow cut back Conium (slow curing)
of suitable cur)
bitumen of sultable wing cosity
are choose fore prime coat. ane choose fore prime coat.
(11) Tack coat -

After theapplication of prime coat bitumenous material of higher viscosity like cut bitumen is spread at a reate of 4.9 to $9.8 \mathrm{~kg} / \mathrm{m}^{2}$.
\rightarrow In some cases bitumenous ernulsion is also used as a tackcoat.
(III) Seal coat -
seal coat is usually recommended as a top or final $c o a t$ after the application of tack coat.
It is also provided over e an alamaged existing ibitumenous surface.
\rightarrow A pre-mixed sandal bitumen mixture is commonly, used as a seal coat.
\rightarrow The main functions of steel coat are -
(a) To develop necessary skid resistance.
(b) To act as a seal against in grace of rain water.

surfacing
could course

WB mrp,Givil,SDTE(O) $^{\text {(}}$ Scanned by CamScanner
(v) Bitumenous Surface Dressing-
$\rightarrow B S D$ is provided overall existing pavement to act as a thin wearing coat.
\rightarrow It as consists of singleapplicaty, of bitumenous binder material. then spreading of aggregates and rolling.
(vi) Bit

Bitumen greac
(1) Constr is d
(1) Pre-mix carpet -
\rightarrow pre-mix carpet consists of coarse aggregate of 12.5 and 10 mm pre-mixed with tare on bitumen compacted to a thicker of 20 mm . to act as a surface Course of the pavement.
7 When "well graded aggregate
are used fore the contruetivi
of bituminous cere are used fore
of bitumenous carpet of thiemeni
$20-2$ $20-25 \mathrm{~mm}$. then it is calle
semidensed carpet.
(vi) Bituminous concrete -

Bitumenous concrete is a dense graded mixture of coarse Mg, fine agg, minercial filler C fine sand, limestone dust) and bitumen designed by an appropriate method.
\rightarrow The thickness of bitumenous concrete varies bitumen $40-75 \mathrm{~mm}$.
Construction steps of c.C pavement Ore Rigid pavement:
(1) Construction of C.C pavements is divided into 2 groups -
(a) constructions of pavement slabs.
(b) Constructions of joints.

A pnstructions of pavement slabs:-
(1) preparation, of subgreade \& subbase -
\rightarrow For laying concrete slabs depressions , or soft spots should be properly taken care e of
\rightarrow Uniform compaction of subgrades subbase, should be done betleast 30 cm on either side of the width to be completed.
\rightarrow The subgreade or subbase should be kept in moist condition time when cement concrete
(11). Placing of forms -
\rightarrow Usually steel or wooden forms \rightarrow finis with stree
\rightarrow The forms are jointed neatly and placed the required grade and alignment.
(v) Cu
batching \& mixing of materide. Coarse lg, fine aggro, and cement are suitably measured by weight and mixing is done in a batch mixer.
The mix should be uniform in colour and homoginity.
(iv) Treansporeting \& placing-

Cement concrete, is placed to the required depth \& wiolth within the foremworek.
\rightarrow While transporting and placing
it should be obselrived that it should be obselrived that no segregation istaking place.
(v) compacting and finishing As soon as the concrete is placed needle vibrator or any Compacting equipment, should be usedir to remove them the concrete.
forms, finishing of surface is done straight edge.
shy squired
nodes-
cement eight batch
n in
laced

lacing
hot place.
is
on any read e pirn
(1) Curing of cement concreteCement concrete surfaces are cured using coverings of jute bags, cotton bags, gunny bags, sand blanket, et
\rightarrow After proper curing of concrete for atleast 28 duels the concrete road is opened to freaffic.

Traffic island -

Traffic islands are defined as the raised areas construction within the rood way to regulat control and guide the traffic in appropria directions.

Broadly freaffic Islands are divided into foure types based on the purpose which they are provided.
(1) Divisional Island
(2) Channelizing. Island
(3) Rotary Island
(4) Pedestrian Load Island Refuge Is land.
(1) Divisional Island-

These are provided in,oreder to separate traffic flow moving in opposite directions to avoid head on collision.
Example - medians or dividers provided on highways.
(2) Channelizing Island These are provided to guide the, traffic into proper channels at the intersection area.
\rightarrow These are very useful traffic control devices particularly when the are a is large. It helps in changing the direction of Al. and debs in reducing possibl. between traffic st...
(iii) Rotary-

This is a large central Island to convert the crossing manoeuvre in to weaving by providing sufficient weaving length.
\rightarrow Usually circcilar rotary Islands
(iv) Refrege Island..

These islands are provided at or near the cross paths to help and protect pedestrians in crossing the carreaigeway.
\rightarrow In multilane highways it is
desirable to provide pedest desirable to provide pedestrian refuge islands after two on three lanes.

Soumye aanjanmehazane
Rut (curie)
Rut (unis)
UhmRT, Rrepgade

