Name of the teaching faculty: DEBADATTA NAYAK Semester:6th No. of periods per week: 5 Semester Exam: 80 Total Marks:100 Discipline/ Dept.: **EE** Subject(Theory): **CSE** Total Periods: **75** Class Test: **20**

Week	Period	UNIT/CHAPTER	Topic to be covered
1 ST	1 st	FUNDAMENTAL OFCONTROL	Introduction to CS. Classification of Control system
	2 nd	FUNDAMENTAL OF CONTROL	Open loop & Closed loop system and its comparison
	3 rd	FUNDAMENTAL OF CONTROL	Effects of Feedback
	1st	FUNDAMENTAL OF CONTROL	Standard test Signals. Servo mechanism
2 ND	2 nd	TUTORIAL CUM DOUBT CLEAR	Discussion about different test signals.
	3 rd	MATHEMATICAL MODEL OF A SYSTEM	Transfer Function & Impulse response
	4 th	MATHEMATICAL MODEL OF A SYSTEM	Properties, Advantages & Disadvantages of T.F
	5 th	MATHEMATICAL MODEL OF A SYSTEM	Poles & Zeroes of T.F. Problems of TF of network.
3rd	1 st	MATHEMATICAL MODEL OF A SYSTEM	Mathematical modeling of Electrical Systems.
	2 nd	TUTORIAL CUM DOUBT CLEAR	Discussion of formulas of Laplace Transform.
	3rd	CONTROL SYSTEM COMPONENTS	Components of Control System
	4 th	CONTROLSYSTEM COMPONENTS	Gyroscope, Synchros,
	5 th	CONTROLSYSTEM COMPONENTS	Tachometer, DC servomotors
	1 st	CONTROLSYSTEM COMPONENTS	Ac Servomotors
	2 nd	TUTORIAL CUM DOUBT CLEAR	Simple Problem Discussion on Laplace Transform
∕/TH	3 rd	BLOCK DIAGRAM ALGEBRA	Basic Elements of Block Diagram
4	4 th	BLOCK DIAGRAM ALGEBRA	Canonical Form of Closed loop Systems
	5 th	BLOCK DIAGRAM ALGEBRA	Rules for Block diagram reduction
	1 st	BLOCK DIAGRAM ALGEBRA	Procedure for Reduction of Block Diagram
	2 nd	TUTORIAL CUM DOUBT CLEAR	Examples problems of Block Diagram reduction
5 TH	3 rd	BLOCK DIAGRAM ALGEBRA	Problem for equivalent transfer function
	4 th	SIGNA LFLOW GRAPHS	Signal Flow Graph & properties
	5 th	SIGNA LFLOW GRAPHS	Construction of SFG from Block diagram
_	1 st	SIGNA LFLOW GRAPHS	Mason's Gain formula. Problems on Signal flow graph
_	2 nd	TUTORIAL CUM DOUBT CLEAR	Examples problems of Signal Flow Graph
6 th	3 rd	TIME RESPONSE ANALYSIS	Time response of control system
-	4 th	TIME RESPONSE ANALYSIS	Standard Test signal
	5 th	TIME RESPONSE ANALYSIS	Time Response of 1 st order system with Unit stepres.
_	1st		Time Response of 1 st order system with Unit impulseres
7 TH	2 nd	TUTORIAL CUM DOUBT CLEAR	Simple Problem Discussion on TIME RESPONSE ANALYSIS
_	3 rd	TIME RESPONSE ANALYSIS	Timeresponseof2 nd ordersystemtotheunitstepinput
_	4 th	TIME RESPONSE ANALYSIS	Timeresponseof2 ^{na} ordersystemtotheunitstepinput
	5 th	TIME RESPONSE ANALYSIS	Types of errors in control system
_	1 st	TIME RESPONSE ANALYSIS	Types of errors in control system
8 TH	2 nd	TUTORIAL CUM DOUBT CLEAR	Simple Problem Discussion on TIME RESPONSE ANALYSIS.
	3 rd	TIME RESPONSE ANALYSIS	Effect of adding poles and zero to transfer function
	4 th	TIME RESPONSE ANALYSIS	Response with P, PI, PD and PID controller
	5 th	ROOT LOCUS TECHNIQUE	Root locus concept
	1 st	ROOT LOCUS TECHNIQUE	Routh Hurwitz criterion
_	2^{nd}	TUTORIAL CUM DOUBT CLEAR	Examples problems of Routh Hurwitz criterion
9тн	3 rd	ROOT LOCUS TECHNIQUE	Construction of root loci
	4 th	ROOT LOCUS TECHNIQUE	Rules for construction of the root locus with example
	5 th	ROOT LOCUS TECHNIQUE	Rules for construction of the root locus with example
10 ^{тн}	1st		Effect of adding poles and zeros to G(s) and H(s)
	2 nd		Objective questions on basics of Control System
	3 rd		Examples problems of Root locus Diagram
	4 th		Examples problems of Root locus Diagram
	5 th		Examples problems of KOOT IOCUS Diagram

	1 st	ROOT LOCUS TECHNIQUE	Examples problems of Root locus Diagram
11тн	2nd	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
	3rd	FREQUENCY RESPONSE OF SYSTEM	Correlation between time & frequency response
	4 th	FREQUENCY RESPONSE OF SYSTEM	Polar plots
	5 th	FREQUENCY RESPONSE OF SYSTEM	Bode plots.
12 TH	1 st	FREQUENCY RESPONSE OF SYSTEM	All pass and minimum phase system
	2 nd	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
	3rd	FREQUENCY RESPONSE OF SYSTEM	Computation of Gain margin and phase margin
	4 th	FREQUENCY RESPONSE OF SYSTEM	Log magnitude versus phase plot.
	5 th	FREQUENCY RESPONSE OF SYSTEM	Closed loop frequency response
13 th	1 st	FREQUENCY RESPONSE OF SYSTEM	Examples problems of Bode Plot
	2 nd	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
	3rd	FREQUENCY RESPONSE OF SYSTEM	Examples problems of Bode Plot
	4 th	FREQUENCY RESPONSE OF SYSTEM	Examples problems of Bode Plot
	5 th	NYQUIST PLOT	Principle of argument
	1 st	NYQUIST PLOT	Niquist stability criterion
	2nd	TUTORIAL CUM DOUBT CLEAR	Objective questions on basics of Control System
14 th	3 rd	NYQUIST PLOT	Niquist stability criterion applied to inverse polar plot
	4 th	NYQUIST PLOT	Addition of poles and zeros to G(S)H(S)
	5 th	NYQUIST PLOT	Effect on the shape of NYQUIST PLOT by pole zero addition
15 th	1 st	NYQUIST PLOT	Assessment of relative stability
	2 nd	TUTORIAL CUM DOUBT CLEAR	Doubts of Control System.
	3 rd	NYQUIST PLOT	Constant M and N circle
	4 th	NYQUIST PLOT	Nicholas chart.
	5 th	NYQUIST PLOT	Examples problems of NYQUIST PLOT
	1 st	NYQUIST PLOT	Examples problems of NYQUIST PLOT
16 ^{th.}	2nd	TUTORIAL CUM DOUBT CLEAR	Doubts of Control System.

The lesson plan prepared by the concerned faculty.

DEBADATTA NAYAK LECTURER, ELECTRICAL DEPARTMENT