UTKAL GOURAV MADHUSUDAN INSTITUTE OF TECHNOLOGY, RAYAGADA Academic Lesson Plan for 1st Semester – 2024 (Winter)

Name of the teaching faculty: Sri Bhabani Sankar Patnaik,			
	Guest Faculty (Phy	ysics)	
Discipline	: Common(Civil/Electri	cal/E&TC/Mechanical)	
Dept.	: Department of Mather	natics & Science	
Semester	: 1 st		
Subject	: Theory 2 : Applied Phy	ysics-I	
No of Periods per week: 4		Total Periods: 60,	
End semester Exam.: 70 Marks,		Class test(I.A): 30 Marks,	
Total Marks: 100 Marks			

Week	Period	Unit / Chapter	Topics to be covered
1st	1 st	Unit-1 Units and Dimensions	Introduction to physical quantities, Definition of fundamental and derived units, system of units (FPS,CGS,SI) with examples. Definition of dimension and dimensional formula of physical quantities, Dimensional equation and principle of homogeneity.
	2 nd		Checking the correctness of the formula. Derivation of simple formula. Limitation of dimensional analysis. Measurement, Least count.
	3rd		Errors, Absolute and Relative error, Error propagation, Error estimation and Significant figures.
	4 th	Unit-2 Scalers and Vectors	Introduction to scalers and vectors with definition and concepts, representation of vectors with examples
2nd	1 st		Types of vectors , triangle and parallelogram law of vector addition (Statement only)
	2 nd		Resolution of vectors , Horizontal and vertical components with its application to inclined plane and lawn roller, Vector multiplication(Scalar and vector product)

	3rd		Concept of force, momentum, Statement and derivation of conservation of linear momentum.
	4 th		Application of conservation of linear momentum (recoil of gun, rocket) ,Impulse and its application.
	1 st		Circular motion , angular displacement, angular velocity and angular acceleration, frequency and time period.
	2 nd		Relation between linear and angular velocity, linear and angular acceleration (related numericals).
3rd	3rd		Centripetal and Centrifugal forces with live examples.
	4 th		Expression and application of centripetal force such as banking of roads and bending of cyclist.
4th	1st	Unit-3 Work , Power and Energy	Work (definition, formula, dimension and SI units), Zero work, Positive work, and Negative work.
	2 nd		Friction(definition and concepts), types of friction(static and dynamic friction)
	3rd		Law of limiting friction (definition, formula, with simple numerical)
	4 th		Coefficient of friction (definition, formula, with simple numerical)
5th	1 st		Method to reduce friction and its engineering application
	2 nd		Work done in moving an object on horizontal and inclined plane for rough and plane surfaces and its applications.
	3rd		Energy: Kinetic energy, Gravitational potential energy(derivation), Mechanical energy.
	4 th		Conservation of mechanical energy for freely falling bodies , Transformation of energy(examples).

6th	1 st		Power (definition and unit), Power and work relationship, Calculation of of power (numericals) .
	2 nd	Unit-4 Rotational Motion	Translational and rotational motion with examples, Definition of torque and angular momentum (with examples)
7th	3rd		Conservation of angular momentum (quantitative) and its application.
	4 th		Moment of inertia and its physical significance, Radius of gyration for rigid body, Theorems of parallel and perpendicular axes(statement only)
	1 st		Moment of inertia of a rod , disc, ring and sphere(hollow and solid);(formula only).
	2 nd	Unit-5 Properties of matter	Elasticity: Definition of stress and strain, Moduli of elasticity.
	3rd		Hook's law and its significance.
	4 th		Pressure: Definition and unit with some live examples.
8th	1 st		Atmospheric pressure, Gauge pressure ,absolute pressure.
	2 nd		Fortin barometer and its applications.
	3rd		Surface tension : Concept , formula and unit with examples.
	4 th		Cohesive and adhesive forces with live examples.
9th	1 st		Angle of contact, Ancle of accent formula (no derivation).
	2 nd		Effect of temperature and impurity on surface tension.

	3rd		Viscosity and coefficient of viscosity(introduction)
	4 th		Terminal velocity (derivation)
10th	1 st		Stokes law (derivation and numericals)
	2 nd		Effect of temperature on viscosity and application in hydraulic system.
	3rd		Hydrodynamics: Fulid motion (introduction with examples).
	4 th		Streamline and turbulent flow with examples.
11th	1 st		Reynold's number , Equation of continuity .
	2 nd		Bernoulli's theorem (only formula and numericals) and its application.
	3rd	UNIT -6 Heat and Thermomet ry	Concept of heat and temperature (introduction).
	4 th		Mode of heat transfer (conduction , convection and radiation with example).
12th	1 st		Specific heat (concept , formula and unit).
	2 nd		Scales of temperature and their relationship.
	3rd		Types of thermometer (mercury thermometer) and their uses.
	4 th		Types of thermometer (bimetalic thermometer) and their uses.
13th	\mathbf{I}^{st}		Types of thermometer (platinum resistance thermometer) and their uses.
	2 nd		Types of thermometer (pyrometer) and their uses.

	3 rd	Numericals based on thermometry.
	4 th	Expansion of solids (introduction with examples.).
	1st	Expansion of liquid and gases (introduction with examples.).
14th	2 nd	Coefficient of linear expansion with examples and related numericals.
	3rd	Coefficient of surface expansion with examples and related numericals.
	4 th	Coefficient of cubical expansion with examples and related numericals.
15TH	1 st	Relation between coefficient of linear , surface and cubical expansions with related numericals.
	2 nd	Co-efficient of thermal conductivity .
	3 rd	Examples and numericals based on Co-efficient of thermal conductivity .
	4 th	Engineering application of Co-efficient of thermal conductivity .

Sri Bhabani Sankar Patnaik

(PTGF) Lecturer in Physics, Dept. of Mathematics & Science, UGMIT, Rayagada