

VLSI LAB MANUAL

5TH SEMESTER E&TC ENGG.

DEPTT. OF ELECTRONICS &

TELECOMMUNICATION

ENGG.

U.G.M.I.T.

 RAYAGADA

VISION OF THE I}TSTITUTE

Crrr t-vi!l.ir1 i: ln derrcioil lrflltlv riIriiia]iJ, v''gri 6:dr-iLaled SoclFtv where all access

1.11{tri i.,r.)ii:'rll;;'rl ;:ir,,l tf--rlr.iiti.tt,rl)1{-j lr-r tr{r. l:ll i:l llcl t''.01-1tfl''fri''ar prnsrerily of the c0untry'

Tr: grovicle hiqn quality educaLion. t.jevq:lop t*:,h"i::1,:,!";-r?:: ;?;"J,X:'J,:
.ap,rlliliitrs sc as lo enai:lc llre prr:illrtl lo 5erve the socte

!il i i j i-tr ! .,r I il i C, lll O I l'ir !\,
rr;

ri.'. r i ii. f 1l r {}il.

li esiablisf,r Electronics arrd Jelecorirnrunlcatron Engtneertng Departmen: a,s the

ci-lnter oi excellence in Educatro', *.luri. iechn;iogy, p-roducrng skrlled.and

eihrc.l Flr.:clronrcs and Tei*cofr, ,., u,.i,,uiio,.,t.iqin*",s *h,o cln meet-the needs of

aiji:{,.ll1 lt:clrno{ccir:.:i ,'ld',',':r:r..ilini-'rri':: tni t-'t ttfapt lo the accelerating Changes

iil : ii:f, ajr-ri,j ttatil:rn;ti iL:,,1.i.

I

.1'* t:lf,ouraq{ir SlLlciel"lt.! lc pursue hiGher studies, to aPPear

vari0uE e0mPetillvf exfrminalians and Other career

e r"'tharceme nl. c0
depar"l rnent,- irrdustries e 0ll aboration throughM5 Ta imPrrve

va rio ils interils|"liP ;i n{.i t,r;'i I l'ti ti r-it r11

Mission StatementMission
Ncr dsteannov ching- FidLrUTOo rh hne rlU

!
LCAuar !,]I ITo q

a real-forentsdstuthe0 pa rea 0 to pre
C tic Laltana i)

a succe$sful5 to pursue^fltl 50olnd clev pnrgl ilf .1
LJire e g

produce
fessi ona I

ical
To

expertise

ea
graduates with

e1: lvalues
clipio rr r:

cation,lechnica I

M.:l

the students,
excellence in

ment to
t0 create

ir:g envirr:n
. ON ClU CiVC

Tc provide the
facutty and slaff

i:esl learn
nrembers

Scanned with ACE Scanner

I"IISSION OT THE IHSTX'TU#E

MrssrQN oF -r ttE DEPARTMENT(DEfi{ft$'6

ML

ca re€l r.

M2

M3

LIST OF EXPERIMENTS

S.NO.

NAME OF EXPERIMENTS

PAGE NO.

1

Develop a VHDL test bench code for testing and implement
addition, subtraction, multiplication and division on FPGA kit.

2

Write a VHDL program for Buzzer Interface.

3

Develop a VHDL test bench code for testing 7 segment LED
display.

4

Develop a VHDL test bench code for testing 4-bit binary counter.

5

Develop a VHDL test bench code for testing simple gates.

6

Develop a VHDL test bench code & implement of FPGA kit for
Multiplexer and De-Multiplexer.

7

Develop a VHDL test bench & implement of FPGA kit for Encoder
and Decoder.

8

Design and implementation of Half Adder and Full Adder.

9

Design and implementation of D flip flop.

10

Write a simple program with two separate LED blinking tasks.

 EXPERIMENT-1

AIM OF THE EXPERIMENT-

Develop a VHDL test bench code for testing and implement addition, subtraction,
multiplication and division on FPGA kit.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software
3. FPGA / CPLD training Kit.

PROCEDURE:
∙ New project and type the project name and check the top level source type as HDL

∙Enter the device properties and click Next

∙ Click New Source and Select the Verilog Module and then give the file name

∙Give the Input and Output port names and click finish.

∙Type the Verilog program and save it

∙Double click the synthesize XST and check syntax

∙Simulate the waveform by behavioral simulation

∙ For implementation Select User constraints and give input and output port pin

number

∙Click Implement design for Translate, map and place & route

∙Generate .bit file using programming file

∙Implement in FPGA through parallel-JTAG cable

∙Check the behavior of design in FPGA by giving inputs

PROGRAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Arithmetic_operation is

Port (NUM1 : in STD_LOGIC_VECTOR (4 downto 0) := "00000";

NUM2 : in STD_LOGIC_VECTOR (4 downto 0) := "00000";

SUM, SUB, MUL, DIV : out STD_LOGIC_VECTOR (4 downto 0));

end Arithmetic_operation ;

architecture Behavioral of Arithmetic_operation is

begin

SUM <= NUM1 + NUM2;

SUB <= NUM1 – NUM2;

MUL <= NUM1 * NUM2;

DIV <= NUM1 / NUM2;

end Behavioral;

CONCLUSION:

 EXPERIMENT-2

AIM OF THE EXPERIMENT

Write a VHDL program for Buzzer Interface.

EQUIPMENT REQUIRED:

∙PC
∙XILINX

∙ FPGA / CPLD training Kit.

THEORY: Buzzer

Piezo buzzer is an electric component that comes in different shapes and sizes, which

can be used to create sound waves when provided with electrical signal. piezo

buzzer requires a square wave to produce a tone.

Interfacing Piezo buzzer with FPGA Development Kit

The FPGA Development Kit has Piezo buzzer, indicated as in Figure. Buzzer is driven
by transistor Q1. FPGA can create sound by generating a PWM(Pulse Width
Modulated) signal – a square wave signal, which is nothing more than a sequence of
logic zeros and ones. Frequency of the square signal determines the pitch of the
generated sound. To enable buzzer, place jumper JP at E label mark position and to
disable buzzer place jumper JP at D Position.

ALGORITHM:
∙ New project and type the project name and check the top level source type as HDL

∙Enter the device properties and click Next

∙ Click New Source and Select the Verilog Module and then give the file name

∙Give the Input and Output port names and click finish.

∙Type the Verilog program and save it

∙Double click the synthesize XST and check syntax

∙Simulate the waveform by behavioral simulation

https://www.pantechsolutions.net/cpld-fpga-boards/spartan3e-xc3s500e-fpga-development-board
https://www.pantechsolutions.net/cpld-fpga-boards/spartan3e-xc3s500e-fpga-development-board

∙ For implementation Select User constraints and give input and output port pin

number

∙Click Implement design for Translate, map and place & route

∙Generate .bit file using programming file

∙Implement in FPGA through parallel-JTAG cable

∙Check the behavior of design in FPGA by giving inputs

VHDL Code Description:

The following VHDL Code demonstrates the functionality of piezo buzzer. PWM pulse
is applied with 2s duty cycle. Buzzer produce beeps sound every 1 sec.

VHDL CODE-

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity buzz is

port (clock : in std_logic;

a : out std_logic

);

end buzz;

architecture Behavioral of buzz is

begin

process(clock)

variable i : integer := 0;

begin

if clock'event and clock = '1' then

if i <= 50000000 then

i := i + 1;

a <= '1';

elsif i > 50000000 and i < 100000000 then

i := i + 1;

a <= '0';

elsif i = 100000000 then

i := 0;

end if;

end if;

end process;

end Behavioral;

User Constraint File

NET "clock" LOC = "p185" ;
NET "a" LOC = "p116" ;

CONCLUSION-

Thus the vhdl code for buzzer was simulated successfully.

 EXPERIMENT-3

 AIM OF THE EXPERIMENT-

Develop a VHDL test bench code for testing 7 segment LED display.

EQUIPMENT REQUIRED:
1. PC

2. XILINX ISE software
3. FPGA kit

THEORY-

Here is a program for BCD to 7-segment display decoder. The module takes 4 bit BCD as input
and outputs 7 bit decoded output for driving the display unit. A seven segment display can be used to
display decimal digits. They have LED or LCD elements which becomes active when the input is zero.
The figure shows how different digits are displayed:

BCD to 7 segment display Decoder Truth Table:

 PROCEDURE:
∙ New project and type the project name and check the top level source type as HDL.

∙Enter the device properties and click Next.

∙ Click New Source and Select the Verilog Module and then give the file name.

∙Give the Input and Output port names and click finish.

∙Type the program and save it.

∙Double click the synthesize XST and check syntax.

∙Simulate the waveform by behavioral simulation.

PROGRAM:

VHDL PROGRAM:

library IEEE;
use
IEEE.STD_LOGIC_1164.AL
L; use
IEEE.STD_LOGIC_ARITH.A
LL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity
SEVEN
is port (

clk : in std_logic;
bcd : in std_logic_vector(3 downto 0); --BCD input
segment7 : out std_logic_vector(6 downto 0) -- 7 bit decoded output.

);
end SEVEN;
--'a' corresponds to MSB of segment7 and g corresponds to LSB of segment7.
architecture Behavioral of SEVEN is

begin
process
(clk,bcd)
BEGIN
if (clk'event and
clk='1') then case bcd
is
when "0000"=> segment7 <="0000001"; -- '1'
when "0001"=> segment7 <="1001111"; -- '1'
when "0010"=> segment7 <="0010010"; -- '2'
when "0011"=> segment7 <="0000110"; -- '3'
when "0100"=> segment7 <="1001100"; -- '4'
when "0101"=> segment7 <="0100100"; -- '5'
when "0110"=> segment7 <="0100000"; -- '6'
when "0111"=> segment7 <="0001111"; -- '7'
when "1000"=> segment7 <="0000000"; -- '8'
when "1001"=> segment7 <="0000100"; -- '9'
--nothing is displayed when a number more than 9 is given as
input. when others=> segment7 <="1111111";
e
n
d
c
a
s
e
;
e
n
d
if
;

end

process

; end

Behavio

ral;

TEST_BENCH PROGRAM:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

ENTITY
SEVEN_TB IS
END
SEVEN_TB;

ARCHITECTURE behavior OF SEVEN_TB IS
signal clk : std_logic := '0';
signal bcd : std_logic_vector(3 downto 0) := (others
=> '0'); signal segment7 : std_logic_vector(6 downto
0);
constant clk_period : time

:= 1 ns; BEGIN
uut: entity work.SEVEN PORT MAP
(clk,bcd,segment7); clk_process :process
begin

clk <= '0';
wait for
clk_period/2;
clk <= '1';
wait for

clk_period/2; end
process;
stim_proc:
process
begin
for i in 0 to 9 loop

bcd <=
conv_std_logic_vector(i,4);
wait for 2 ns;

end
loop
; end
proc
ess;

END;
CONCLUSION:

 EXPERIMENT - 4

AIM OF THE EXPERIMENT-

Develop a VHDL test bench code for testing 4-bit binary counter.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software

THEORY-

The external clock pulses (pulses to be counted) are fed directly to each of the J-
K flipflop in the counter chain and that both the J and K inputs are all tied together in
toggle mode, but only in the first flip-flop, flip-flop FFA (LSB) are they connected HIGH,
logic “1” allowing the flip-flop to toggle on every clock pulse. Then the synchronous

counter follows a predetermined sequence of states in response to the common clock
signal, advancing one state for each pulse.

The J and K inputs of flip-flop FFB are connected directly to the output QA of
flip-flop FFA, but the J and K inputs of flip-flops FFC and FFD are driven from
separate AND gates which are also supplied with signals from the input and output of
the previous stage. These additional AND gates generate the required logic for the JK
inputs of the next stage.

If we enable each JK flip-flop to toggle based on whether or not all preceding
flip-flop outputs (Q) are “HIGH” we can obtain the same counting sequence as with the
asynchronous circuit but without the ripple effect, since each flip-flop in this circuit
will be clocked at exactly the same time.

Then as there is no inherent propagation delay in synchronous counters,
because all the counter stages are triggered in parallel at the same time, the maximum
operating frequency of this type of frequency counter is much higher than that for a
similar asynchronous counter circuit.

PROCEDURE:
∙ New project and type the project name and check the top level source type as HDL.

∙Enter the device properties and click Next.

∙ Click New Source and Select the Verilog Module and then give the file name.

∙Give the Input and Output port names and click finish.

∙Type the program and save it.

∙Double click the synthesize XST and check syntax.

∙Simulate the waveform by behavioral simulation.

PROGRAM:

VHDL PROGRAM:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity UP_COUNTER is
Port (clk: in std_logic; -- clock input

reset: in std_logic; -- reset input
counter: out std_logic_vector(3 downto 0) -- output 4-bit counter

);
end UP_COUNTER;

architecture Behavioral of UP_COUNTER is
signal counter_up: std_logic_vector(3 downto 0);
begin
-- up counter
process(clk)
begin
if(rising_edge(clk)) then

if(reset='1') then
counter_up <= x"0";

else
counter_up <= counter_up + x"1";

end if;
end if;
end process;
counter <= counter_up;

end Behavioral;

 TEST_BENCH PROGRAM:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
end tb_counters;

architecture Behavioral of tb_counters is

component UP_COUNTER
Port (clk: in std_logic; -- clock input

reset: in std_logic; -- reset input
counter: out std_logic_vector(3 downto 0) -- output 4-bit counter

);
end component;
signal reset,clk: std_logic;
signal counter:std_logic_vector(3 downto 0);

begin
dut: UP_COUNTER port map (clk => clk, reset=>reset, counter => counter);
clock_process :process
begin

clk <= '0';
wait for 10 ns;
clk <= '1';
wait for 10 ns;

end process;

stim_proc: process
begin

reset <= '1';
wait for 20 ns;
reset <= '0';
wait;

end process;
end Behavioral;

CONCLUSION

 EXPERIMENT-5

AIM OF THE EXPERIMENT-

Develop a VHDL test bench code for testing simple gates.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software

THEORY-

AND GATE-

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs
are high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this
dot is sometimes omitted i.e. AB.

OR Gate:
The OR gate is an electronic circuit that gives a high output (1) if one or more of its
inputs are high. A plus (+) is used to show the OR operation.

NAND GATE:
This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The
outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND
gate with a small circle on the output. The small circle represents inversion.

NOR GATE:
This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs

of all NOR gates are low if any of the inputs are high.
The symbol is an OR gate with a small circle on the output. The small circle represents
inversion.

EXOR GATE:
The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both,
of its two inputs are high. An encircled plus sign () is used to show the EXOR operation.

PROCEDURE:
∙ New project and type the project name and check the top level source type as HDL.

∙Enter the device properties and click Next.

∙ Click New Source and Select the Verilog Module and then give the file name.

∙Give the Input and Output port names and click finish.

∙Type the program and save it.

∙Double click the synthesize XST and check syntax.

∙Simulate the waveform by behavioral simulation.

PROGRAM:
VHDL PROGRAM:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity gates is

Port (a,b : in STD_LOGIC;

p,q,r,s,t : out STD_LOGIC);

end gates;

architecture Behavioral of gates is

begin

p<= a and b;

q<= a or b;

r<= a nand b;

s<= a nor b;

t<= a xor b;

end Behavioral;

TEST BENCH PROGRAM:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY gates_tb IS

END gates_tb;

ARCHITECTURE behavior OF gates_tb IS

COMPONENT gates

PORT(

a : IN std_logic;

b : IN std_logic;

p : OUT std_logic;

q : OUT std_logic;

r : OUT std_logic;

s : OUT std_logic;

t : OUT std_logic

);

END COMPONENT;

signal a : std_logic := '0';

signal b : std_logic := '0';

signal p : std_logic;

signal q : std_logic;

signal r : std_logic;

signal s : std_logic;

signal t : std_logic;

BEGIN

uut: gates PORT MAP (

a => a,

b => b,

p => p,

q => q,

r => r,

s => s,

t => t

);

stim_proc: process

begin

wait for 20 ns;

a<= '0';

b<= '0';

wait for 20 ns;

a<= '0';

b<= '1';

wait for 20 ns;

a<= '1';

b<= '0';

wait for 20 ns;

end process;

END;

CONCLUSION

EXPERIMENT-6

AIM OF THE EXPERIMENT-

Develop a VHDL test bench code & implement of FPGA kit for Multiplexer and De-
Multiplexer.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software
3. FPGA KIT

THEORY-

Multiplexer-

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 &
s0 and one output Y.

One of these 4 inputs will be connected to the output based on the
combination of inputs present at these two selection lines.

Truth Table-

Selection Lines Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

From Truth table, we can directly write the Boolean function for output, Y as

Y=S1'S0′I0+S1′S0I1+S1S0′I2+S1S0I3

DE- MULTIPLEXER-

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3,
Y2, Y1 &Y0.

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based on the
values of selection lines s1 & s0.

Truth Table-

Selection Inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

From the above Truth table, we can directly write the Boolean functions for each
output as

Y3=s1s0I

Y2=s1s0′I

Y1=s1′s0I

Y0=s1′s0′I

PROCEDURE:
∙ New project and type the project name and check the top level source type as HDL

∙Enter the device properties and click Next

∙ Click New Source and Select the Verilog Module and then give the file name

∙Give the Input and Output port names and click finish.

∙Type the Verilog program and save it

∙Double click the synthesize XST and check syntax

∙Simulate the waveform by behavioral simulation

∙ For implementation Select User constraints and give input and output port pin

number

∙Click Implement design for Translate, map and place & route

∙Generate .bit file using programming file

∙Implement in FPGA through parallel-JTAG cable

∙Check the behavior of design in FPGA by giving inputs

PROGRAM:
VHDL Program:
4:1 MULTIPLEXER
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Mux is

Port (I0, I1, I2, I3,S0,S1 : in STD_LOGIC;

Y : out STD_LOGIC);

end Mux;

architecture Behavioral of Mux is

begin

Y<= ((Not S0) and (NOT S1) and I0) or ((not S0 and S1 and I1) or (S0 and (not S1)

and I2) or (S0 and S1 and I3);

end Behavioral;

TEST BENCH PROGRAM:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY Mux_TB IS

END Mux_TB;

ARCHITECTURE behavior OF Mux_TB IS

COMPONENT Mux

PORT(

I0 : IN std_logic;

I1 : IN std_logic;

I2 : IN std_logic;

I3 : IN std_logic;

S0 : IN std_logic;

S1 : IN std_logic;

Y : OUT std_logic

);

END COMPONENT;

signal I0 : std_logic := '0';

signal I1 : std_logic := '0';

signal I2 : std_logic := '0';

signal I3 : std_logic := '0';

signal S0 : std_logic := '0';

signal S1 : std_logic := '0';

signal Y : std_logic;

BEGIN

uut: Mux PORT MAP (

I0 => I0,

I1 => I1,

I2 => I2,

I3 => I3,

S0 => S0,

S1 => S1,

Y => Y

);

stim_proc: process

begin

I0<= '0';

I1<= '1';

I2<= '0';

I3<= '1';

S0<= '0';

S1<= '0';

wait for 100ns;

S0<= '0';

S1<= '1';

wait for 100ns;

S0<= '1';

S1<= '0';

wait for 100ns;

S0<= '1';

S1<= '1';

wait for 100ns;

wait;

end process;

END;

DE-MULTIPLEXER
VHDL Program:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Demux is

Port (Y0,Y1,Y2,Y3 : out STD_LOGIC;

I, s0,s1 : in STD_LOGIC);

end Demux;

architecture Behavioral of Demux is

begin

Y0<= (not s0) and (not s1) and I;

Y1<= (not s0) and s1 and I;

Y2<= s0 and (not s1) and I;

Y3<= s0 and s1 and I;

end Behavioral;

Test Bench Program:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY Demux_TB IS

END Demux_TB;

ARCHITECTURE behavior OF Demux_TB IS

COMPONENT Demux

PORT(

Y0 : OUT std_logic;

Y1 : OUT std_logic;

Y2 : OUT std_logic;

Y3 : OUT std_logic;

I : IN std_logic;

S0 : IN std_logic;

S1 : IN std_logic

);

END COMPONENT;

signal I : std_logic := '0';

signal s0 : std_logic := '0';

signal s1 : std_logic := '0';

signal Y0 : std_logic;

signal Y1 : std_logic;

signal Y2 : std_logic;

signal Y3 : std_logic;

BEGIN

uut: Demux PORT MAP (

Y0 => Y0,

Y1 => Y1,

Y2 => Y2,

Y3 => Y3,

I => I,

S0 => s0,

S1 => s1

);

stim_proc: process

begin

I<= '1';

S0<= '0';

S1<= '0';

wait for 100ns;

s0<= '0';

s1<= '1';

wait for 100ns;

s0<= '1';

s1<= '0';

wait for 100ns;

s0<= '1';

s1<= '1';

wait for 100ns;

wait;

end process;

END;

CONCLUSION:

 EXPERIMENT-7

AIM OF THE EXPERIMENT-

Develop a VHDL test bench & implement of FPGA kit for Encoder and Decoder.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software
3. FPGA KIT

THEORY-

ENCODER-
An encoder is a combinational logic circuit that takes in multiple inputs, encodes them,
and outputs an encoded version with fewer bits. A 4:2 encoder has four input ports
and two output ports.

Y0 = A’BC’D’ + AB’C’D’ = C’D'()

Y1 = A’B’CD’ + AB’C’D’ = B’D'()

Truth table of a 4:2 encoder

A B C D Y0 Y1

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

DECODER-

A decoder is a combinational logic circuit that does the opposite job of an encoder. It
takes in a coded binary input and decodes it to give a higher number of outputs. 2:4
decoder has two input ports and four output ports.

https://technobyte.org/sequential-combinational-logic-circuits-types/
https://technobyte.org/sequential-combinational-logic-circuits-types/

Truth table for a 2:4 decoder

A B Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

Y0 = A’B’

Y1 = A’B

Y2 = AB’

Y3 = AB

PROCEDURE:

∙ New project and type the project name and check the top level source type as HDL

∙Enter the device properties and click Next

∙ Click New Source and Select the Verilog Module and then give the file name

∙Give the Input and Output port names and click finish.

∙Type the Verilog program and save it

∙Double click the synthesize XST and check syntax

∙Simulate the waveform by behavioral simulation

∙ For implementation Select User constraints and give input and output port pin

number

∙Click Implement design for Translate, map and place & route

∙Generate .bit file using programming file

∙Implement in FPGA through parallel-JTAG cable

∙Check the behavior of design in FPGA by giving inputs

PROGRAM:
ENCODER-

VHDL Program:
Library IEEE;

Use IEEE.STD_LOGIC_1164.ALL;

Use IEEE.STD_LOGIC_ARITH.ALL;

Use IEEE.STD_LOGIC_UNSIGNED.ALL;

Entity ENCODER_SOURCE is

Port (A, B, C, D: in STD_LOGIC;

Y0, Y1: out STD_LOGIC);

End ENCODER_SOURCE;

Architecture dataflow of ENCODER_SOURCE is

Begin

Y0 <= ((not C) and (not D)) and (A xor B);

Y1 <= ((not B) and (not D)) and (A xor C);

End dataflow;

TEST BENCH PROGRAM:

Library IEEE;
Use IEEE.STD_LOGIC_1164.ALL;
Use IEEE.STD_LOGIC_ARITH.ALL;
Use IEEE.STD_LOGIC_UNSIGNED.ALL;
Entity encoder_dataflow_tb is
End entity;
Architecture tb of encoder_dataflow_tb is
Component ENCODER_SOURCE is
Port (A, B, C, D: in STD_LOGIC;
Y0, Y1: out STD_LOGIC);
End component;
Signal A, B, C, D, Y0, Y1: STD_LOGIC;
Begin
uut: ENCODER_SOURCE port map(
A => A, B => B,
C => C, D => D,
Y0 => Y0, Y1 => Y1);
stim: process

begin
A <= '0';
B <= '0';
C <= '0';
D <= '1';
wait for 20 ns;
A <= '0';
B <= '0';
C <= '1';
D <= '0';
wait for 20 ns;
A <= '0';
B <= '1';
C <= '0';
D <= '0';
wait for 20 ns;
A <= '1';
B <= '0';
C <= '0';
D <= '0';
wait for 20 ns;
wait;

end process;
end tb;

DECODER
VHDL Program:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity DECODER_SOURCE is

Port (A,B : in STD_LOGIC;
Y3,Y2,Y1,Y0 : out STD_LOGIC);

end DECODER_SOURCE;

architecture dataflow of DECODER_SOURCE is

begin

Y0 <= ((not A)and(not B));
Y1 <= ((not A) and B);
Y2 <= (A and (not B));
Y3 <= (A and B)

 end dataflow;

Test Bench Program:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity decoder_tb is
end entity;

architecture tb of decoder_tb is
component DECODER_SOURCE is
Port (A,B : in STD_LOGIC;
Y3,Y2,Y1,Y0 : out STD_LOGIC);
end component;

signal A, B, Y3, Y2, Y1, Y0 : STD_LOGIC;

begin

uut: DECODER_SOURCE port map(
A => A, B => B,
Y0 => Y0, Y1 => Y1,
Y2 => Y2, Y3 => Y3);

stim: process
begin

A <= '0';
B <= '0';
wait for 20 ns;

A <= '0';
B <= '1';
wait for 20 ns;

A <= '1';
B <= '0';
wait for 20 ns;

A <= '1';
B <= '1';
wait for 20 ns;

wait;

end process;

end tb;
CONCLUSION:

 EXPERIMENT-8

AIM OF THE EXPERIMENT-

Design and implementation of Half Adder and Full Adder.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software
3. FPGA KIT

THEORY-

Half Adder-
Half adder is a combinational arithmetic circuit that adds two numbers and produces
a sum bit (S) and carry bit (C) as the output. If A and B are the input bits, then sum bit
(S) is the X-OR of A and B and the carry bit (C) will be the AND of A and B.

Full Adder-

The full adder is a three-input and two output combinational circuit.

PROCEDURE:

∙ New project and type the project name and check the top level source type as HDL

∙Enter the device properties and click Next

∙ Click New Source and Select the Verilog Module and then give the file name

∙Give the Input and Output port names and click finish.

∙Type the Verilog program and save it

∙Double click the synthesize XST and check syntax

∙Simulate the waveform by behavioral simulation

∙ For implementation Select User constraints and give input and output port pin

number

∙Click Implement design for Translate, map and place & route

∙Generate .bit file using programming file

∙Implement in FPGA through parallel-JTAG cable

∙Check the behavior of design in FPGA by giving inputs

PROGRAM:
HALF ADDER
VHDL Program:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Half_Adder is

Port (A,B : in STD_LOGIC;

S, C : out STD_LOGIC);

end Half_Adder;

architecture Behavioral of Half_Adder is

begin

S<= A xor B;

C<= A and B;

end Behavioral;

FULL ADDER
VHDL Program:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Full_Adder is

Port (A,B,𝐶𝑖𝑛 : in STD_LOGIC;

𝐶𝑜, S : out STD_LOGIC);

end Full_Adder;

architecture Behavioral of Full_Adder is

begin

S<= A xor B xor 𝐶𝑖𝑛;

𝐶𝑂<= (A and B)or (B and 𝐶𝑖𝑛)or (𝐶𝑖𝑛 and A);

end Behavioral;

CONCLUSION:

 EXPERIMENT-9

AIM OF THE EXPERIMENT-

Design and implementation of D flip flop.

EQUIPMENT REQUIRED:
1. PC
2. XILINX ISE software

THEORY:

Latch is an electronic device that can be used to store one bit of information.
The D latch is used to capture, or 'latch' the logic level which is present on the Data line
when the clock input is high.
If the data on the D line changes state while the clock pulse is high, then the output, Q,
follows the input, D. When the CLK input falls to logic 0, the last state of the D input is
trapped and held in the latch.

PROCEDURE:

∙ New project and type the project name and check the top level source type as HDL

∙Enter the device properties and click Next

∙ Click New Source and Select the Verilog Module and then give the file name

∙Give the Input and Output port names and click finish.

∙Type the Verilog program and save it

∙Double click the synthesize XST and check syntax

∙Simulate the waveform by behavioral simulation

∙ For implementation Select User constraints and give input and output port pin

number

∙Click Implement design for Translate, map and place & route

∙Generate .bit file using programming file

∙Implement in FPGA through parallel-JTAG cable

∙Check the behavior of design in FPGA by giving inputs

PROGRAM:
VHDL Program:
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity D_flipflop is

Port (D,CLK : in STD_LOGIC;

q,qbar : inout STD_LOGIC);

end D_flipflop;

architecture Behavioral of D_flipflop is

signal d1, d2:STD_LOGIC;

begin

d1<= D nand CLK;

d2<= (not D) nand CLK;

q<= d1 nand qbar;

qbar<= d2 nand q;

end Behavioral;

CONCLUSION:

EXPERIMENT-10

AIM OF THE EXPERIMENT:

Write a simple program with two separate LED blinking tasks.

EQUIPMENTS REQUIRED:

 Nvis 5004B board

 Adapter 5volt/1Amp

 USB Cable

THEORY:

 LED is a semiconductor device used in many electronic devices, mostly used for
indication purposes. It is used widely as indicator during test for checking the
validity of results at different stages.

 It is very cheap and easily available in variety of shape, color and size. The LEDs
are also used in designing of message display boards and traffic control signal
lights etc.

PROCEDURE:

 Connect the USB cable to USB port of your PC and UART0 (B Type USB)
port of the board (in PC interface & ISP section) provided on the board.

 Change the position of Run/ISP switch placed in” PC Interface & ISP Section”
block on the ISP mode.

 Turn ON switch no 1, 2 placed in” I2C & SPI” block.

 Connect the power cable to the board and switch ‘ON’ the power switch.

 Start the Philips flash utility (available in the all programs on the Start menu of
Windows OS: Start menu/All programs/Philips semiconductor/Flash
utility/Launch LPC210x_ISP.exe.) and select the appropriate port settings (use
baud rate 9600).

 Program” Blinky Task.hex” (CD-drive\ RTOS Program\1.Blinky\ Blinky
Task.hex).

 Switch ‘OFF’ the power supply and change the position of Run/ISP switch
placed in” PC Interface & ISP Section” block on the RUN mode.

 Put all the switches provided in the ‘LED Interface’ block in the ON position.

 Switch ‘On’ the supply, then press reset switch.

 Observe simultaneously glowing of two LED’s.

PROGRAM:

#include <LPC214x.H>

/***

* Delay

* Description : This function provide Delay in Mili Sec.

**/

void MSdelay(unsigned int rTime)

{

unsigned int i,j;

for(i=0;i<=rTime;i++)

for(j=0;j<4867;j++);

}

/***

* Main:

* Description : This function used to interface 8 LEDs.

**

******************/

int main(void)

{

IO1DIR = 0x00FF0000; /* Define Port1 pin P1.16 to

P1.23 as output */

while (1)

{

IO1SET = 0x00FF0000; /* Glow All LEDs */

MSdelay (100); /* Delay */

IO1CLR = 0x00FF0000;

MSdelay (100); /* Delay */

}

CONCLUSION:

	EXPERIMENT-1
	AIM OF THE EXPERIMENT-
	EQUIPMENT REQUIRED:
	PROCEDURE:
	PROGRAM:
	CONCLUSION:
	EXPERIMENT-2
	EQUIPMENT REQUIRED: (1)
	THEORY: Buzzer
	Interfacing Piezo buzzer with FPGA Development Kit
	ALGORITHM:
	VHDL Code Description:
	VHDL CODE-
	User Constraint File
	CONCLUSION-
	EXPERIMENT-3
	AIM OF THE EXPERIMENT- (1)
	EQUIPMENT REQUIRED: (2)
	THEORY-
	PROCEDURE: (1)
	VHDL PROGRAM:
	TEST_BENCH PROGRAM:
	EXPERIMENT - 4
	AIM OF THE EXPERIMENT-
	EQUIPMENT REQUIRED:
	THEORY-
	PROCEDURE:

	VHDL PROGRAM: (1)
	TEST_BENCH PROGRAM: (1)
	AIM OF THE EXPERIMENT-
	EQUIPMENT REQUIRED:
	THEORY-
	PROCEDURE:
	PROGRAM:
	AIM OF THE EXPERIMENT- (1)
	EQUIPMENT REQUIRED: (1)
	THEORY- (1)
	DE- MULTIPLEXER-
	PROCEDURE: (1)
	PROGRAM: (1)
	4:1 MULTIPLEXER
	TEST BENCH PROGRAM:
	DE-MULTIPLEXER
	Test Bench Program:
	EXPERIMENT-7
	AIM OF THE EXPERIMENT- (2)
	EQUIPMENT REQUIRED: (2)
	THEORY- ENCODER-
	Truth table of a 4:2 encoder
	Truth table for a 2:4 decoder
	PROCEDURE: (2)
	PROGRAM: (2)
	VHDL Program:
	TEST BENCH PROGRAM: (1)
	DECODER
	Test Bench Program: (1)
	EQUIPMENT REQUIRED: (3)
	THEORY- (2)
	Full Adder-
	PROCEDURE: (3)
	PROGRAM: HALF ADDER
	FULL ADDER
	AIM OF THE EXPERIMENT- (3)
	EQUIPMENT REQUIRED: (4)
	THEORY:
	PROCEDURE: (4)
	PROGRAM: (3)
	AIM OF THE EXPERIMENT:
	EQUIPMENTS REQUIRED:
	THEORY: (1)
	PROCEDURE: (5)
	PROGRAM: (4)
	CONCLUSION:

